These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 37780374)

  • 21. A Unified Deep Learning Framework for Single-Cell ATAC-Seq Analysis Based on ProdDep Transformer Encoder.
    Wang Z; Zhang Y; Yu Y; Zhang J; Liu Y; Zou Q
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902216
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transformer with difference convolutional network for lightweight universal boundary detection.
    Li M; Liu Y; Chen D; Chen L; Liu S
    PLoS One; 2024; 19(4):e0302275. PubMed ID: 38626177
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DGA-5mC: A 5-methylcytosine site prediction model based on an improved DenseNet and bidirectional GRU method.
    Jia J; Qin L; Lei R
    Math Biosci Eng; 2023 Mar; 20(6):9759-9780. PubMed ID: 37322910
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MESTrans: Multi-scale embedding spatial transformer for medical image segmentation.
    Liu Y; Zhu Y; Xin Y; Zhang Y; Yang D; Xu T
    Comput Methods Programs Biomed; 2023 May; 233():107493. PubMed ID: 36965298
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Novel Computational Method for Detecting DNA Methylation Sites with DNA Sequence Information and Physicochemical Properties.
    Pan G; Jiang L; Tang J; Guo F
    Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29419752
    [TBL] [Abstract][Full Text] [Related]  

  • 26. HViT: Hybrid vision inspired transformer for the assessment of carotid artery plaque by addressing the cross-modality domain adaptation problem in MRI.
    Ayoub M; Liao Z; Li L; Wong KKL
    Comput Med Imaging Graph; 2023 Oct; 109():102295. PubMed ID: 37717365
    [TBL] [Abstract][Full Text] [Related]  

  • 27. TransPhos: A Deep-Learning Model for General Phosphorylation Site Prediction Based on Transformer-Encoder Architecture.
    Wang X; Zhang Z; Zhang C; Meng X; Shi X; Qu P
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457080
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DeepSTF: predicting transcription factor binding sites by interpretable deep neural networks combining sequence and shape.
    Ding P; Wang Y; Zhang X; Gao X; Liu G; Yu B
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37328639
    [TBL] [Abstract][Full Text] [Related]  

  • 29. O-Net: A Novel Framework With Deep Fusion of CNN and Transformer for Simultaneous Segmentation and Classification.
    Wang T; Lan J; Han Z; Hu Z; Huang Y; Deng Y; Zhang H; Wang J; Chen M; Jiang H; Lee RG; Gao Q; Du M; Tong T; Chen G
    Front Neurosci; 2022; 16():876065. PubMed ID: 35720715
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Multimodel-Based Deep Learning Framework for Short Text Multiclass Classification with the Imbalanced and Extremely Small Data Set.
    Tong J; Wang Z; Rui X
    Comput Intell Neurosci; 2022; 2022():7183207. PubMed ID: 36248939
    [TBL] [Abstract][Full Text] [Related]  

  • 31. TMSC-m7G: A transformer architecture based on multi-sense-scaled embedding features and convolutional neural network to identify RNA N7-methylguanosine sites.
    Zhang S; Xu Y; Liang Y
    Comput Struct Biotechnol J; 2024 Dec; 23():129-139. PubMed ID: 38089465
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel hybrid framework based on temporal convolution network and transformer for network traffic prediction.
    Zhang Z; Gong S; Liu Z; Chen D
    PLoS One; 2023; 18(9):e0288935. PubMed ID: 37682829
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detection of transcription factors binding to methylated DNA by deep recurrent neural network.
    Li H; Gong Y; Liu Y; Lin H; Wang G
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34962264
    [TBL] [Abstract][Full Text] [Related]  

  • 34. iPromoter-5mC: A Novel Fusion Decision Predictor for the Identification of 5-Methylcytosine Sites in Genome-Wide DNA Promoters.
    Zhang L; Xiao X; Xu ZC
    Front Cell Dev Biol; 2020; 8():614. PubMed ID: 32850787
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comprehensive review and assessment of computational methods for predicting RNA post-transcriptional modification sites from RNA sequences.
    Chen Z; Zhao P; Li F; Wang Y; Smith AI; Webb GI; Akutsu T; Baggag A; Bensmail H; Song J
    Brief Bioinform; 2020 Sep; 21(5):1676-1696. PubMed ID: 31714956
    [TBL] [Abstract][Full Text] [Related]  

  • 36. BiLSTM-5mC: A Bidirectional Long Short-Term Memory-Based Approach for Predicting 5-Methylcytosine Sites in Genome-Wide DNA Promoters.
    Cheng X; Wang J; Li Q; Liu T
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946497
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep4mC: systematic assessment and computational prediction for DNA N4-methylcytosine sites by deep learning.
    Xu H; Jia P; Zhao Z
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32578842
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SENet: A deep learning framework for discriminating super- and typical enhancers by sequence information.
    Luo H; Li Y; Liu H; Ding P; Yu Y; Luo L
    Comput Biol Chem; 2023 Aug; 105():107905. PubMed ID: 37348298
    [TBL] [Abstract][Full Text] [Related]  

  • 39. i4mC-Deep: An Intelligent Predictor of N4-Methylcytosine Sites Using a Deep Learning Approach with Chemical Properties.
    Alam W; Tayara H; Chong KT
    Genes (Basel); 2021 Jul; 12(8):. PubMed ID: 34440291
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PST-PRNA: prediction of RNA-binding sites using protein surface topography and deep learning.
    Li P; Liu ZP
    Bioinformatics; 2022 Apr; 38(8):2162-2168. PubMed ID: 35150250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.