These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 37780374)

  • 41. DeepM6ASeq: prediction and characterization of m6A-containing sequences using deep learning.
    Zhang Y; Hamada M
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):524. PubMed ID: 30598068
    [TBL] [Abstract][Full Text] [Related]  

  • 42. DeepLncLoc: a deep learning framework for long non-coding RNA subcellular localization prediction based on subsequence embedding.
    Zeng M; Wu Y; Lu C; Zhang F; Wu FX; Li M
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34498677
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Linear Regression and Deep Learning Approach for Detecting Reliable Genetic Alterations in Cancer Using DNA Methylation and Gene Expression Data.
    Mallik S; Seth S; Bhadra T; Zhao Z
    Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32806782
    [TBL] [Abstract][Full Text] [Related]  

  • 44. DeepTorrent: a deep learning-based approach for predicting DNA N4-methylcytosine sites.
    Liu Q; Chen J; Wang Y; Li S; Jia C; Song J; Li F
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32608476
    [TBL] [Abstract][Full Text] [Related]  

  • 45. ASPIRER: a new computational approach for identifying non-classical secreted proteins based on deep learning.
    Wang X; Li F; Xu J; Rong J; Webb GI; Ge Z; Li J; Song J
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35176756
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Application of Feature Selection and Deep Learning for Cancer Prediction Using DNA Methylation Markers.
    Gomes R; Paul N; He N; Huber AF; Jansen RJ
    Genes (Basel); 2022 Aug; 13(9):. PubMed ID: 36140725
    [TBL] [Abstract][Full Text] [Related]  

  • 47. DeepD2V: A Novel Deep Learning-Based Framework for Predicting Transcription Factor Binding Sites from Combined DNA Sequence.
    Deng L; Wu H; Liu X; Liu H
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073774
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Predicting protein-peptide binding residues via interpretable deep learning.
    Wang R; Jin J; Zou Q; Nakai K; Wei L
    Bioinformatics; 2022 Jun; 38(13):3351-3360. PubMed ID: 35604077
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improved drug-target interaction prediction with intermolecular graph transformer.
    Liu S; Wang Y; Deng Y; He L; Shao B; Yin J; Zheng N; Liu TY; Wang T
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35514186
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Predicting DNA toehold-mediated strand displacement rate constants using a DNA-BERT transformer deep learning model.
    Akay A; Reddy HN; Galloway R; Kozyra J; Jackson AW
    Heliyon; 2024 Apr; 10(7):e28443. PubMed ID: 38560216
    [TBL] [Abstract][Full Text] [Related]  

  • 51. EPI-Mind: Identifying Enhancer-Promoter Interactions Based on Transformer Mechanism.
    Ni Y; Fan L; Wang M; Zhang N; Zuo Y; Liao M
    Interdiscip Sci; 2022 Sep; 14(3):786-794. PubMed ID: 35633468
    [TBL] [Abstract][Full Text] [Related]  

  • 52. i5mC-DCGA: an improved hybrid network framework based on the CBAM attention mechanism for identifying promoter 5mC sites.
    Jia J; Lei R; Qin L; Wei X
    BMC Genomics; 2024 Mar; 25(1):242. PubMed ID: 38443802
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An Efficient Dehazing Algorithm Based on the Fusion of Transformer and Convolutional Neural Network.
    Xu J; Chen ZX; Luo H; Lu ZM
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616639
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A multimodal deep learning framework for predicting drug-drug interaction events.
    Deng Y; Xu X; Qiu Y; Xia J; Zhang W; Liu S
    Bioinformatics; 2020 Aug; 36(15):4316-4322. PubMed ID: 32407508
    [TBL] [Abstract][Full Text] [Related]  

  • 55. DeepCLA: A Hybrid Deep Learning Approach for the Identification of Clathrin.
    Zhang J; Yu J; Lin D; Guo X; He H; Shi S
    J Chem Inf Model; 2021 Jan; 61(1):516-524. PubMed ID: 33347303
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Transformer-Based Bridge Structural Response Prediction Framework.
    Li Z; Li D; Sun T
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459083
    [TBL] [Abstract][Full Text] [Related]  

  • 57. EPI-Trans: an effective transformer-based deep learning model for enhancer promoter interaction prediction.
    Ahmed FS; Aly S; Liu X
    BMC Bioinformatics; 2024 Jun; 25(1):216. PubMed ID: 38890584
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A deep learning framework for enhancer prediction using word embedding and sequence generation.
    Geng Q; Yang R; Zhang L
    Biophys Chem; 2022 Jul; 286():106822. PubMed ID: 35605495
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A deep learning method for lincRNA detection using auto-encoder algorithm.
    Yu N; Yu Z; Pan Y
    BMC Bioinformatics; 2017 Dec; 18(Suppl 15):511. PubMed ID: 29244011
    [TBL] [Abstract][Full Text] [Related]  

  • 60. GraphKM: machine and deep learning for K
    He X; Yan M
    BMC Bioinformatics; 2024 Mar; 25(1):135. PubMed ID: 38549073
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.