These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37780377)

  • 1. Linking watershed nutrient loading to estuary water quality with generalized additive models.
    Schramm MP
    PeerJ; 2023; 11():e16073. PubMed ID: 37780377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water quality dynamics in an urbanizing subtropical estuary(Oso Bay, Texas).
    Wetz MS; Hayes KC; Fisher KV; Price L; Sterba-Boatwright B
    Mar Pollut Bull; 2016 Mar; 104(1-2):44-53. PubMed ID: 26876558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nutrient Improvements in Chesapeake Bay: Direct Effect of Load Reductions and Implications for Coastal Management.
    Murphy RR; Keisman J; Harcum J; Karrh RR; Lane M; Perry ES; Zhang Q
    Environ Sci Technol; 2022 Jan; 56(1):260-270. PubMed ID: 34931816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the effects of nutrient management in an estuary experiencing climatic change: the Neuse River Estuary, North Carolina.
    Paerl HW; Valdes LM; Piehler MF; Stow CA
    Environ Manage; 2006 Mar; 37(3):422-36. PubMed ID: 16456630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three dimensional water quality modeling of a shallow subtropical estuary.
    Wan Y; Ji ZG; Shen J; Hu G; Sun D
    Mar Environ Res; 2012 Dec; 82():76-86. PubMed ID: 23122270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water quality trends in Texas estuaries.
    Bugica K; Sterba-Boatwright B; Wetz MS
    Mar Pollut Bull; 2020 Mar; 152():110903. PubMed ID: 31957680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conowingo Reservoir Sedimentation and Chesapeake Bay: State of the Science.
    Cerco CF
    J Environ Qual; 2016 May; 45(3):882-6. PubMed ID: 27136154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Internal nutrients dominate load and drive hypoxia in a eutrophic estuary.
    Cormier JM; Coffin MRS; Pater CC; Knysh KM; Gilmour RF; Guyondet T; Courtenay SC; van den Heuvel MR
    Environ Monit Assess; 2023 Sep; 195(10):1211. PubMed ID: 37707663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Reservoir Sediment Scour on Water Quality in a Downstream Estuary.
    Cerco CF; Noel MR
    J Environ Qual; 2016 May; 45(3):894-905. PubMed ID: 27136156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water quality changes and shift in mechanisms controlling hypoxia in response to pollutant load reductions: A case study for Shiziyang Bay, Southern China.
    Lai Y; Jia Z; Xie Z; Li S; Hu J
    Sci Total Environ; 2022 Oct; 842():156774. PubMed ID: 35724782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural nutrient enrichment and algal responses in near pristine micro-estuaries and micro-outlets.
    Human LRD; Magoro ML; Dalu T; Perissinotto R; Whitfield AK; Adams JB; Deyzel SHP; Rishworth GM
    Sci Total Environ; 2018 May; 624():945-954. PubMed ID: 29275257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eutrophication forcings on a peri-urban lake ecosystem: Context for integrated watershed to airshed management.
    Putt AE; MacIsaac EA; Herunter HE; Cooper AB; Selbie DT
    PLoS One; 2019; 14(7):e0219241. PubMed ID: 31339893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental response of an Irish estuary to changing land management practices.
    Ní Longphuirt S; O'Boyle S; Stengel DB
    Sci Total Environ; 2015 Jul; 521-522():388-99. PubMed ID: 25863317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An inverse approach to estimate bacterial loading into an estuary by using field observations and residence time.
    Yu X; Shen J; Du J
    Mar Environ Res; 2021 Apr; 166():105263. PubMed ID: 33571822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Major point and nonpoint sources of nutrient pollution to surface water have declined throughout the Chesapeake Bay watershed.
    Sabo RD; Sullivan B; Wu C; Trentacoste E; Zhang Q; Shenk GW; Bhatt G; Linker LC
    Environ Res Commun; 2022 May; 4(4):1-11. PubMed ID: 37089436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Bayesian modeling approach for phosphorus load apportionment in a reservoir with high water transfer disturbance.
    Liu X; Wang Y; Feng J; Chu C; Qiu Y; Xu Z; Li Z; Wang Y
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32395-32408. PubMed ID: 30229496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Management pathways for the successful reduction of nonpoint source nutrients in coastal ecosystems.
    Green L; Magel C; Brown C
    Reg Stud Mar Sci; 2021 Jun; 45():1-15. PubMed ID: 35800159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward reversal of eutrophic conditions in a subtropical estuary: water quality and seagrass response to nitrogen loading reductions in Tampa Bay, Florida, USA.
    Greening H; Janicki A
    Environ Manage; 2006 Aug; 38(2):163-78. PubMed ID: 16788855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classic indicators and diel dissolved oxygen versus trend analysis in assessing eutrophication of potable-water reservoirs.
    Burkholder JM; Kinder CA; Dickey DA; Reed RE; Arellano C; James JL; Mackenzie LM; Allen EH; Lindor NL; Mathis JG; Thomas ZT
    Ecol Appl; 2022 Jun; 32(4):e2541. PubMed ID: 35072953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutrient loads and their impacts on chlorophyll a in the Mae Klong River and estuarine ecosystem: an approach for nutrient criteria development.
    Thongdonphum B; Meksumpun S; Meksumpun C
    Water Sci Technol; 2011; 64(1):178-88. PubMed ID: 22053473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.