These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37781172)

  • 1. Constructing an artificial short route for cell-free biosynthesis of the phenethylisoquinoline scaffold.
    Zhang Y; Liu WQ; Li J
    Synth Syst Biotechnol; 2023 Dec; 8(4):610-617. PubMed ID: 37781172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elucidation of the 1-phenethylisoquinoline pathway from an endemic conifer
    Qiao F; He Y; Zhang Y; Jiang X; Cong H; Wang Z; Sun H; Xiao Y; Zhao Y; Nick P
    Proc Natl Acad Sci U S A; 2023 Jan; 120(1):e2209339120. PubMed ID: 36577068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery and engineering of colchicine alkaloid biosynthesis.
    Nett RS; Lau W; Sattely ES
    Nature; 2020 Aug; 584(7819):148-153. PubMed ID: 32699417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational Engineering of (
    De Sousa JPM; Oliveira NCSA; Fernandes PA
    Molecules; 2023 May; 28(11):. PubMed ID: 37298742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Artificial Pathway for Isoprenoid Biosynthesis Decoupled from Native Hemiterpene Metabolism.
    Lund S; Hall R; Williams GJ
    ACS Synth Biol; 2019 Feb; 8(2):232-238. PubMed ID: 30648856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and partial characterization of norcoclaurine synthase, the first committed step in benzylisoquinoline alkaloid biosynthesis, from opium poppy.
    Samanani N; Facchini PJ
    Planta; 2001 Oct; 213(6):898-906. PubMed ID: 11722126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogenetic analysis and functional characterization of norcoclaurine synthase involved in benzylisoquinoline alkaloids biosynthesis in Stephania tetrandra.
    Li X; Li Q; Jiao X; Tang H; Cheng Y; Ma Y; Cui G; Tang J; Chen Y; Guo J; Huang L
    J Cell Physiol; 2024 Oct; 239(10):e31065. PubMed ID: 37357496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of plant tetrahydroisoquinoline alkaloids through an imine reductase route.
    Yang L; Zhu J; Sun C; Deng Z; Qu X
    Chem Sci; 2020 Jan; 11(2):364-371. PubMed ID: 32190259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell-Free Biosynthesis of Lysine-Derived Unnatural Amino Acids with Chloro, Alkene, and Alkyne Groups.
    Chen Y; Liu WQ; Zheng X; Liu Y; Ling S; Li J
    ACS Synth Biol; 2023 Apr; 12(4):1349-1357. PubMed ID: 37040607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three Principles of Diversity-Generating Biosynthesis.
    Gu W; Schmidt EW
    Acc Chem Res; 2017 Oct; 50(10):2569-2576. PubMed ID: 28891639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity.
    Anterola AM; Lewis NG
    Phytochemistry; 2002 Oct; 61(3):221-94. PubMed ID: 12359514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast.
    Trenchard IJ; Siddiqui MS; Thodey K; Smolke CD
    Metab Eng; 2015 Sep; 31():74-83. PubMed ID: 26166409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis of enzymatic (S)-norcoclaurine biosynthesis.
    Ilari A; Franceschini S; Bonamore A; Arenghi F; Botta B; Macone A; Pasquo A; Bellucci L; Boffi A
    J Biol Chem; 2009 Jan; 284(2):897-904. PubMed ID: 19004827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric synthesis of tetrahydroisoquinolines by enzymatic Pictet-Spengler reaction.
    Nishihachijo M; Hirai Y; Kawano S; Nishiyama A; Minami H; Katayama T; Yasohara Y; Sato F; Kumagai H
    Biosci Biotechnol Biochem; 2014; 78(4):701-7. PubMed ID: 25036970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilizing Alcohol for Alkane Biosynthesis by Introducing a Fatty Alcohol Dehydrogenase.
    Sui YA; Kishino S; Maruyama S; Ito M; Muramatsu M; Obata S; Ogawa J
    Appl Environ Microbiol; 2022 Dec; 88(23):e0126422. PubMed ID: 36416567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 'Dopamine-first' mechanism enables the rational engineering of the norcoclaurine synthase aldehyde activity profile.
    Lichman BR; Gershater MC; Lamming ED; Pesnot T; Sula A; Keep NH; Hailes HC; Ward JM
    FEBS J; 2015 Mar; 282(6):1137-51. PubMed ID: 25620686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic Pictet-Spengler Reaction: Computational Study of the Mechanism and Enantioselectivity of Norcoclaurine Synthase.
    Sheng X; Himo F
    J Am Chem Soc; 2019 Jul; 141(28):11230-11238. PubMed ID: 31265268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silencing of tryptamine biosynthesis for production of nonnatural alkaloids in plant culture.
    Runguphan W; Maresh JJ; O'Connor SE
    Proc Natl Acad Sci U S A; 2009 Aug; 106(33):13673-8. PubMed ID: 19666570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering the leucine biosynthetic pathway for isoamyl alcohol overproduction in Saccharomyces cerevisiae.
    Yuan J; Mishra P; Ching CB
    J Ind Microbiol Biotechnol; 2017 Jan; 44(1):107-117. PubMed ID: 27826727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dimeric pyrrole-imidazole alkaloids: sources, structures, bioactivities and biosynthesis.
    Chu MJ; Li M; Zhao Y
    Bioorg Chem; 2023 Apr; 133():106332. PubMed ID: 36773454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.