BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37781598)

  • 21. The essential chaperone DNAJC17 activates HSP70 to coordinate RNA splicing and G2-M progression.
    Allegakoen DV; Kwong K; Morales J; Bivona TG; Sabnis AJ
    bioRxiv; 2023 Oct; ():. PubMed ID: 37961102
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Data-driven large-scale genomic analysis reveals an intricate phylogenetic and functional landscape in J-domain proteins.
    Malinverni D; Zamuner S; Rebeaud ME; Barducci A; Nillegoda NB; De Los Rios P
    Proc Natl Acad Sci U S A; 2023 Aug; 120(32):e2218217120. PubMed ID: 37523524
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The conserved carboxyl terminus and zinc finger-like domain of the co-chaperone Ydj1 assist Hsp70 in protein folding.
    Lu Z; Cyr DM
    J Biol Chem; 1998 Mar; 273(10):5970-8. PubMed ID: 9488737
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The chaperone Hsp70 is a BH3 receptor activated by the pro-apoptotic Bim to stabilize anti-apoptotic clients.
    Guo Z; Song T; Wang Z; Lin D; Cao K; Liu P; Feng Y; Zhang X; Wang P; Yin F; Dai J; Zhou S; Zhang Z
    J Biol Chem; 2020 Sep; 295(37):12900-12909. PubMed ID: 32651234
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dosage sensitivity of JDPs, a valuable tool for understanding their function: a case study on Caj1 overexpression-mediated filamentous growth in budding yeast.
    Sagarika P; Dobriyal N; Sahi C
    Curr Genet; 2021 Jun; 67(3):407-415. PubMed ID: 33492464
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The expanding world of plant J-domain proteins.
    Verma AK; Tamadaddi C; Tak Y; Lal SS; Cole SJ; Hines JK; Sahi C
    CRC Crit Rev Plant Sci; 2019; 38(5-6):382-400. PubMed ID: 33223602
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Specification of Hsp70 Function by Hsp40 Co-chaperones.
    Cyr DM; Ramos CH
    Subcell Biochem; 2023; 101():127-139. PubMed ID: 36520305
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In Situ Monitoring of Transiently Formed Molecular Chaperone Assemblies in Bacteria, Yeast, and Human Cells.
    Alberts N; Mathangasinghe Y; Nillegoda NB
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31524873
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [SWI], the prion formed by the chromatin remodeling factor Swi1, is highly sensitive to alterations in Hsp70 chaperone system activity.
    Hines JK; Li X; Du Z; Higurashi T; Li L; Craig EA
    PLoS Genet; 2011 Feb; 7(2):e1001309. PubMed ID: 21379326
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The
    Almaazmi SY; Kaur RP; Singh H; Blatch GL
    Front Mol Biosci; 2023; 10():1216192. PubMed ID: 37457831
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A unique chaperoning mechanism in class A JDPs recognizes and stabilizes mutant p53.
    Zoltsman G; Dang TL; Kuchersky M; Faust O; Silva MS; Ilani T; Wentink AS; Bukau B; Rosenzweig R
    Mol Cell; 2024 Apr; 84(8):1512-1526.e9. PubMed ID: 38508184
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mammalian cytosolic DnaJ homologues affect the hsp70 chaperone-substrate reaction cycle, but do not interact directly with nascent or newly synthesized proteins.
    Nagata H; Hansen WJ; Freeman B; Welch WJ
    Biochemistry; 1998 May; 37(19):6924-38. PubMed ID: 9578579
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multivalent protein-protein interactions are pivotal regulators of eukaryotic Hsp70 complexes.
    Johnson OT; Gestwicki JE
    Cell Stress Chaperones; 2022 Jul; 27(4):397-415. PubMed ID: 35670950
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Specification of Hsp70 function by Type I and Type II Hsp40.
    Cyr DM; Ramos CH
    Subcell Biochem; 2015; 78():91-102. PubMed ID: 25487017
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bag1 functions in vivo as a negative regulator of Hsp70 chaperone activity.
    Nollen EA; Brunsting JF; Song J; Kampinga HH; Morimoto RI
    Mol Cell Biol; 2000 Feb; 20(3):1083-8. PubMed ID: 10629065
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of Reconstituted Tripartite Complex Supports Avidity-based Recruitment of Hsp70 by Substrate Bound J-domain Protein.
    Jelen M; Grochowina I; Grabinska-Rogala A; Ciesielski SJ; Dabrowska K; Tomiczek B; Nierzwicki L; Delewski W; Schilke B; Czub J; Dadlez M; Dutkiewicz R; Craig EA; Marszalek J
    J Mol Biol; 2023 Nov; 435(21):168283. PubMed ID: 37730084
    [TBL] [Abstract][Full Text] [Related]  

  • 37. J-like protein family of Arabidopsis thaliana: the enigmatic cousins of J-domain proteins.
    Tamadaddi C; Verma AK; Zambare V; Vairagkar A; Diwan D; Sahi C
    Plant Cell Rep; 2022 Jun; 41(6):1343-1355. PubMed ID: 35290497
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of Novel Rhodacyanine-Based Heat Shock Protein 70 Inhibitors.
    Chang CS; Kumar V; Lee DY; Chen Y; Wu YC; Gao JY; Chu PC
    Curr Med Chem; 2021; 28(26):5431-5446. PubMed ID: 33538660
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-throughput screen for inhibitors of protein-protein interactions in a reconstituted heat shock protein 70 (Hsp70) complex.
    Taylor IR; Dunyak BM; Komiyama T; Shao H; Ran X; Assimon VA; Kalyanaraman C; Rauch JN; Jacobson MP; Zuiderweg ERP; Gestwicki JE
    J Biol Chem; 2018 Mar; 293(11):4014-4025. PubMed ID: 29414793
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hsp70 protein complexes as drug targets.
    Assimon VA; Gillies AT; Rauch JN; Gestwicki JE
    Curr Pharm Des; 2013; 19(3):404-17. PubMed ID: 22920901
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.