These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 37781899)
21. Structural transitions in tau k18 on micelle binding suggest a hierarchy in the efficacy of individual microtubule-binding repeats in filament nucleation. Barré P; Eliezer D Protein Sci; 2013 Aug; 22(8):1037-48. PubMed ID: 23740819 [TBL] [Abstract][Full Text] [Related]
22. Identification of Aggregation Mechanism of Acetylated PHF6* and PHF6 Tau Peptides Based on Molecular Dynamics Simulations and Markov State Modeling. Shah SJA; Zhang Q; Guo J; Liu H; Liu H; Villà-Freixa J ACS Chem Neurosci; 2023 Nov; 14(21):3959-3971. PubMed ID: 37830541 [TBL] [Abstract][Full Text] [Related]
23. Mirror-Image Phage Display for the Selection of D-Amino Acid Peptide Ligands as Potential Therapeutics. Malhis M; Funke SA Curr Protoc; 2024 Feb; 4(2):e957. PubMed ID: 38372457 [TBL] [Abstract][Full Text] [Related]
24. Atomistic mechanism of polyphenol amyloid aggregation inhibitors: molecular dynamics study of Curcumin, Exifone, and Myricetin interaction with the segment of tau peptide oligomer. Berhanu WM; Masunov AE J Biomol Struct Dyn; 2015; 33(7):1399-411. PubMed ID: 25093402 [TBL] [Abstract][Full Text] [Related]
25. Interactions of a multifunctional di-triazole derivative with Alzheimer's Aβ Kaur A; Shuaib S; Goyal D; Goyal B Phys Chem Chem Phys; 2020 Jan; 22(3):1543-1556. PubMed ID: 31872820 [TBL] [Abstract][Full Text] [Related]
26. Serotonin and Melatonin Show Different Modes of Action on Aβ Gong Y; Zhan C; Zou Y; Qian Z; Wei G; Zhang Q ACS Chem Neurosci; 2021 Feb; 12(4):799-809. PubMed ID: 33533252 [TBL] [Abstract][Full Text] [Related]
27. Computational design and evaluation of β-sheet breaker peptides for destabilizing Alzheimer's amyloid-β Shuaib S; Narang SS; Goyal D; Goyal B J Cell Biochem; 2019 Oct; 120(10):17935-17950. PubMed ID: 31162715 [TBL] [Abstract][Full Text] [Related]
28. Mechanistic insight into the disruption of Tau R3-R4 protofibrils by curcumin and epinephrine: an all-atom molecular dynamics study. Zou Y; Qi B; Tan J; Sun Y; Gong Y; Zhang Q Phys Chem Chem Phys; 2022 Aug; 24(34):20454-20465. PubMed ID: 35993190 [TBL] [Abstract][Full Text] [Related]
29. Inhibition of tau amyloid formation and disruption of its preformed fibrils by Naphthoquinone-Dopamine hybrid. Paul A; Viswanathan GK; Huber A; Arad E; Engel H; Jelinek R; Gazit E; Segal D FEBS J; 2021 Jul; 288(14):4267-4290. PubMed ID: 33523571 [TBL] [Abstract][Full Text] [Related]
30. Five similar anthocyanidin molecules display distinct disruptive effects and mechanisms of action on Aβ Chen Y; Zhan C; Li X; Pan T; Yao Y; Tan Y; Wei G Int J Biol Macromol; 2024 Jan; 256(Pt 2):128467. PubMed ID: 38035959 [TBL] [Abstract][Full Text] [Related]
31. Deciphering the Role of ATP on PHF6 Aggregation. Pal S; Roy R; Paul S J Phys Chem B; 2022 Jul; 126(26):4761-4775. PubMed ID: 35759245 [TBL] [Abstract][Full Text] [Related]
32. Unraveling the Influence of K280 Acetylation on the Conformational Features of Tau Core Fragment: A Molecular Dynamics Simulation Study. Zou Y; Guan L Front Mol Biosci; 2021; 8():801577. PubMed ID: 34966788 [TBL] [Abstract][Full Text] [Related]
33. Disruption of PHF6 Peptide Aggregation from Tau Protein: Mechanisms of Palmatine Chloride in Preventing Early PHF6 Aggregation. Fagnen C; Giovannini J; Vignol T; Since M; Catto M; Voisin-Chiret AS; Sopkova-de Oliveira Santos J ACS Chem Neurosci; 2024 Nov; 15(21):3981-3990. PubMed ID: 39404232 [TBL] [Abstract][Full Text] [Related]
34. Insights into the inhibitory mechanism of a resveratrol and clioquinol hybrid against Aβ Saini RK; Shuaib S; Goyal D; Goyal B J Biomol Struct Dyn; 2019 Aug; 37(12):3183-3197. PubMed ID: 30582723 [TBL] [Abstract][Full Text] [Related]
35. Terminal Capping of an Amyloidogenic Tau Fragment Modulates Its Fibrillation Propensity. Arya S; Ganguly P; Arsiccio A; Claud SL; Trapp B; Schonfeld GE; Liu X; Lazar Cantrell K; Shea JE; Bowers MT J Phys Chem B; 2020 Oct; 124(40):8772-8783. PubMed ID: 32816481 [TBL] [Abstract][Full Text] [Related]
36. Study on molecular mechanisms of destabilizing Aβ(1-42) protofibrils by licochalcone A and licochalcone B using molecular dynamics simulations. Fang M; Su K; Wang X; Guan P; Hu X J Mol Graph Model; 2023 Jul; 122():108500. PubMed ID: 37094420 [TBL] [Abstract][Full Text] [Related]
37. Computational Study of the Driving Forces and Dynamics of Curcumin Binding to Amyloid-β Protofibrils. Martin TD; Malagodi AJ; Chi EY; Evans DG J Phys Chem B; 2019 Jan; 123(3):551-560. PubMed ID: 30571122 [TBL] [Abstract][Full Text] [Related]
38. Mapping the configurational landscape and aggregation phase behavior of the tau protein fragment PHF6. Pretti E; Shell MS Proc Natl Acad Sci U S A; 2023 Nov; 120(48):e2309995120. PubMed ID: 37983502 [TBL] [Abstract][Full Text] [Related]
39. The inhibitory mechanism of a fullerene derivative against amyloid-β peptide aggregation: an atomistic simulation study. Sun Y; Qian Z; Wei G Phys Chem Chem Phys; 2016 May; 18(18):12582-91. PubMed ID: 27091578 [TBL] [Abstract][Full Text] [Related]
40. Membrane-mediated fibrillation and toxicity of the tau hexapeptide PHF6. Fanni AM; Vander Zanden CM; Majewska PV; Majewski J; Chi EY J Biol Chem; 2019 Oct; 294(42):15304-15317. PubMed ID: 31439664 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]