These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 37781899)
41. Mechanistic insights into the mitigation of Aβ aggregation and protofibril destabilization by a D-enantiomeric decapeptide rk10. Singh K; Kaur A; Goyal D; Goyal B Phys Chem Chem Phys; 2022 Sep; 24(36):21975-21994. PubMed ID: 36069400 [TBL] [Abstract][Full Text] [Related]
42. Positional effects of phosphorylation on the stability and morphology of tau-related amyloid fibrils. Inoue M; Konno T; Tainaka K; Nakata E; Yoshida HO; Morii T Biochemistry; 2012 Feb; 51(7):1396-406. PubMed ID: 22304362 [TBL] [Abstract][Full Text] [Related]
43. Insights into Molecular Mechanisms of EGCG and Apigenin on Disrupting Amyloid-Beta Protofibrils Based on Molecular Dynamics Simulations. Fang M; Zhang Q; Guan P; Su K; Wang X; Hu X J Phys Chem B; 2022 Oct; 126(41):8155-8165. PubMed ID: 36219848 [TBL] [Abstract][Full Text] [Related]
44. Formation and growth of oligomers: a Monte Carlo study of an amyloid tau fragment. Li DW; Mohanty S; Irbäck A; Huo S PLoS Comput Biol; 2008 Dec; 4(12):e1000238. PubMed ID: 19057640 [TBL] [Abstract][Full Text] [Related]
45. On the Tracks of the Aggregation Mechanism of the PHF6 Peptide from Tau Protein: Molecular Dynamics, Energy, and Interaction Network Investigations. Fagnen C; Giovannini J; Catto M; Voisin-Chiret AS; Sopkova-de Oliveira Santos J ACS Chem Neurosci; 2022 Oct; 13(19):2874-2887. PubMed ID: 36153969 [TBL] [Abstract][Full Text] [Related]
46. Growth of beta-amyloid(1-40) protofibrils by monomer elongation and lateral association. Characterization of distinct products by light scattering and atomic force microscopy. Nichols MR; Moss MA; Reed DK; Lin WL; Mukhopadhyay R; Hoh JH; Rosenberry TL Biochemistry; 2002 May; 41(19):6115-27. PubMed ID: 11994007 [TBL] [Abstract][Full Text] [Related]
47. Potent Tau Aggregation Inhibitor D-Peptides Selected against Tau-Repeat 2 Using Mirror Image Phage Display. Malhis M; Kaniyappan S; Aillaud I; Chandupatla RR; Ramirez LM; Zweckstetter M; Horn AHC; Mandelkow E; Sticht H; Funke SA Chembiochem; 2021 Nov; 22(21):3049-3059. PubMed ID: 34375027 [TBL] [Abstract][Full Text] [Related]
48. Computational Insights Into the Inhibition Mechanism of Proanthocyanidin B2 on Tau Hexapeptide (PHF6) Oligomer. Li Q; Xiong C; Liu H; Ge H; Yao X; Liu H Front Chem; 2021; 9():666043. PubMed ID: 34336783 [TBL] [Abstract][Full Text] [Related]
49. Distinct Binding Dynamics, Sites and Interactions of Fullerene and Fullerenols with Amyloid-β Peptides Revealed by Molecular Dynamics Simulations. Liu Z; Zou Y; Zhang Q; Chen P; Liu Y; Qian Z Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31027286 [TBL] [Abstract][Full Text] [Related]
50. Molecular mechanisms of resveratrol and EGCG in the inhibition of Aβ Li F; Zhan C; Dong X; Wei G Phys Chem Chem Phys; 2021 Sep; 23(34):18843-18854. PubMed ID: 34612422 [TBL] [Abstract][Full Text] [Related]
51. Molecular dynamics simulations to investigate the structural stability and aggregation behavior of the GGVVIA oligomers derived from amyloid beta peptide. Chang LK; Zhao JH; Liu HL; Liu KT; Chen JT; Tsai WB; Ho Y J Biomol Struct Dyn; 2009 Jun; 26(6):731-40. PubMed ID: 19385701 [TBL] [Abstract][Full Text] [Related]
52. Inhibition of the Aggregation and Toxicity of the Minimal Amyloidogenic Fragment of Tau by Its Pro-Substituted Analogues. Chemerovski-Glikman M; Frenkel-Pinter M; Mdah R; Abu-Mokh A; Gazit E; Segal D Chemistry; 2017 Jul; 23(40):9618-9624. PubMed ID: 28544138 [TBL] [Abstract][Full Text] [Related]
53. Charge-pairing mechanism of phosphorylation effect upon amyloid fibrillation of human tau core peptide. Inoue M; Hirata A; Tainaka K; Morii T; Konno T Biochemistry; 2008 Nov; 47(45):11847-57. PubMed ID: 18922026 [TBL] [Abstract][Full Text] [Related]
54. Molecular Dynamics Simulation Study of the Self-Assembly of Tau-Derived PHF6 and Its Inhibition by Oleuropein Aglycone from Extra Virgin Olive Oil. Paul S; Biswas P J Phys Chem B; 2024 Jun; 128(23):5630-5641. PubMed ID: 38814052 [TBL] [Abstract][Full Text] [Related]
55. Destabilization of the Alzheimer's amyloid-β protofibrils by THC: A molecular dynamics simulation study. Kanchi PK; Dasmahapatra AK J Mol Graph Model; 2021 Jun; 105():107889. PubMed ID: 33725642 [TBL] [Abstract][Full Text] [Related]
56. Heparin remodels the microtubule-binding repeat R3 of Tau protein towards fibril-prone conformations. Dong X; Qi R; Qiao Q; Li X; Li F; Wan J; Zhang Q; Wei G Phys Chem Chem Phys; 2021 Sep; 23(36):20406-20418. PubMed ID: 34494046 [TBL] [Abstract][Full Text] [Related]
57. Carbamylation promotes amyloidogenesis and induces structural changes in Tau-core hexapeptide fibrils. Guru KrishnaKumar V; Baweja L; Ralhan K; Gupta S Biochim Biophys Acta Gen Subj; 2018 Dec; 1862(12):2590-2604. PubMed ID: 30071272 [TBL] [Abstract][Full Text] [Related]
58. Tau assembly: the dominant role of PHF6 (VQIVYK) in microtubule binding region repeat R3. Ganguly P; Do TD; Larini L; LaPointe NE; Sercel AJ; Shade MF; Feinstein SC; Bowers MT; Shea JE J Phys Chem B; 2015 Apr; 119(13):4582-93. PubMed ID: 25775228 [TBL] [Abstract][Full Text] [Related]
59. Dependence of the Formation of Tau and Aβ Peptide Mixed Aggregates on the Secondary Structure of the N-Terminal Region of Aβ. Rojas AV; Maisuradze GG; Scheraga HA J Phys Chem B; 2018 Jul; 122(28):7049-7056. PubMed ID: 29940109 [TBL] [Abstract][Full Text] [Related]