These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 37782081)

  • 1. Mechanism and application of 3D-printed degradable bioceramic scaffolds for bone repair.
    Lin H; Zhang L; Zhang Q; Wang Q; Wang X; Yan G
    Biomater Sci; 2023 Oct; 11(21):7034-7050. PubMed ID: 37782081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy.
    Ma H; Feng C; Chang J; Wu C
    Acta Biomater; 2018 Oct; 79():37-59. PubMed ID: 30165201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D printing of sponge spicules-inspired flexible bioceramic-based scaffolds.
    Yang Z; Xue J; Li T; Zhai D; Yu X; Huan Z; Wu C
    Biofabrication; 2022 Apr; 14(3):. PubMed ID: 35417888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of 3D-printed polylactic acid/bioceramic composite scaffolds for bone tissue engineering in preclinical in vivo studies: A systematic review.
    Alonso-Fernández I; Haugen HJ; López-Peña M; González-Cantalapiedra A; Muñoz F
    Acta Biomater; 2023 Sep; 168():1-21. PubMed ID: 37454707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D-printed porous tantalum artificial bone scaffolds: fabrication, properties, and applications.
    Yu H; Xu M; Duan Q; Li Y; Liu Y; Song L; Cheng L; Ying J; Zhao D
    Biomed Mater; 2024 May; 19(4):. PubMed ID: 38697199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Appreciable biosafety, biocompatibility and osteogenic capability of 3D printed nonstoichiometric wollastonite scaffolds favorable for clinical translation.
    Wei Y; Wang Z; Lei L; Han J; Zhong S; Yang X; Gou Z; Chen L
    J Orthop Translat; 2024 Mar; 45():88-99. PubMed ID: 38516038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of 3D printed Ca
    He F; Rao J; Zhou J; Fu W; Wang Y; Zhang Y; Zuo F; Shi H
    Colloids Surf B Biointerfaces; 2023 Sep; 229():113472. PubMed ID: 37487286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coating 3D-Printed Bioceramics with Histatin Promotes Adhesion and Osteogenesis of Stem Cells.
    Wang D; Wang H; Yan Y; Wei N; Jaspers RT; Cao W; Lei X; Li S; Qi Y; Hu F; Lan H; Wu G
    Tissue Eng Part C Methods; 2023 Jul; 29(7):321-331. PubMed ID: 37416982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect.
    Shao H; Ke X; Liu A; Sun M; He Y; Yang X; Fu J; Liu Y; Zhang L; Yang G; Xu S; Gou Z
    Biofabrication; 2017 Apr; 9(2):025003. PubMed ID: 28287077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-printed Mg-incorporated PCL-based scaffolds: A promising approach for bone healing.
    Dong Q; Zhang M; Zhou X; Shao Y; Li J; Wang L; Chu C; Xue F; Yao Q; Bai J
    Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112372. PubMed ID: 34579891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D-printed bioceramic scaffolds with Fe
    Zhuang H; Qin C; Zhang M; Ma J; Zhai D; Ma B; Ma N; Huan Z; Wu C
    Biofabrication; 2021 Aug; 13(4):. PubMed ID: 34340226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D printed strontium-zinc-phosphate bioceramic scaffolds with multiple biological functions for bone tissue regeneration.
    Deng L; Huang L; Pan H; Zhang Q; Que Y; Fan C; Chang J; Ni S; Yang C
    J Mater Chem B; 2023 Jun; 11(24):5469-5482. PubMed ID: 36723376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Dual Effect of 3D-Printed Biological Scaffolds Composed of Diverse Biomaterials in the Treatment of Bone Tumors.
    Ma Y; Zhang B; Sun H; Liu D; Zhu Y; Zhu Q; Liu X
    Int J Nanomedicine; 2023; 18():293-305. PubMed ID: 36683596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological response of 3D-printed
    Tian Y; Ma H; Yu X; Feng B; Yang Z; Zhang W; Wu C
    Biomed Mater; 2023 Mar; 18(3):. PubMed ID: 36898162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cobalt-doped bioceramic scaffolds fabricated by 3D printing show enhanced osteogenic and angiogenic properties for bone repair.
    Li J; Zhao C; Liu C; Wang Z; Ling Z; Lin B; Tan B; Zhou L; Chen Y; Liu D; Zou X; Liu W
    Biomed Eng Online; 2021 Jul; 20(1):70. PubMed ID: 34303371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling the influence of channel size and shape in 3D printed ceramic scaffolds on osteogenesis.
    Entezari A; Wu Q; Mirkhalaf M; Lu Z; Roohani I; Li Q; Dunstan CR; Jiang X; Zreiqat H
    Acta Biomater; 2024 May; 180():115-127. PubMed ID: 38642786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of 3D Printing Technology in Bone Tissue Engineering: A Review.
    Feng Y; Zhu S; Mei D; Li J; Zhang J; Yang S; Guan S
    Curr Drug Deliv; 2021; 18(7):847-861. PubMed ID: 33191886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration.
    Luo Y; Zhai D; Huan Z; Zhu H; Xia L; Chang J; Wu C
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24377-83. PubMed ID: 26479454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Printing of Bioceramic Scaffolds-Barriers to the Clinical Translation: From Promise to Reality, and Future Perspectives.
    Lin K; Sheikh R; Romanazzo S; Roohani I
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31438561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DLP fabrication of customized porous bioceramics with osteoinduction ability for remote isolation bone regeneration.
    Zhang B; Xing F; Chen L; Zhou C; Gui X; Su Z; Fan S; Zhou Z; Jiang Q; Zhao L; Liu M; Fan Y; Zhang X
    Biomater Adv; 2023 Feb; 145():213261. PubMed ID: 36577193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.