These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37782093)

  • 1. Selective and controlled H
    Zhang Q; Wang Y; Jin X; Liu X
    Nanoscale; 2023 Oct; 15(39):15975-15981. PubMed ID: 37782093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic insight into efficient H
    Xu F; Yan J; Wang Y; Liu X
    iScience; 2023 Apr; 26(4):106504. PubMed ID: 37091254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulating oxygen coverage of Ti
    Hou T; Luo Q; Li Q; Zu H; Cui P; Chen S; Lin Y; Chen J; Zheng X; Zhu W; Liang S; Yang J; Wang L
    Nat Commun; 2020 Aug; 11(1):4251. PubMed ID: 32843636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Catalytic Performance of N-Doped Carbon Sphere-Supported Pd Nanoparticles by Secondary Nitrogen Source Regulation for Formic Acid Dehydrogenation.
    Deng M; Yang A; Ma J; Yang C; Cao T; Yang S; Yao M; Liu F; Wang X; Cao J
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18550-18560. PubMed ID: 35412790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient hydrogen production from formic acid dehydrogenation over ultrasmall PdIr nanoparticles on amine-functionalized yolk-shell mesoporous silica.
    Chai H; Hu J; Zhang R; Feng Y; Li H; Liu Z; Zhou C; Wang X
    J Colloid Interface Sci; 2025 Jan; 678(Pt C):261-271. PubMed ID: 39298977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial Confinement of Pt Nanoparticles in Carbon Nanotubes for Efficient and Selective H
    Jin X; Yan J; Liu X; Zhang Q; Huang Y; Wang Y; Wang C; Wu Y
    Adv Sci (Weinh); 2024 Mar; 11(12):e2306893. PubMed ID: 38225898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amine-Functionalized Carbon Bowl-Supported Pd-La(OH)
    Sun X; Zhang G; Yao Q; Li H; Feng G; Lu ZH
    Inorg Chem; 2022 Nov; 61(45):18102-18111. PubMed ID: 36325636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Effective Strategy to Boost Formic Acid Dehydrogenation over Pd/AC-NH
    Jiang S; Shi H; Xu Y; Liu J; Yu T; Ren G
    ACS Appl Mater Interfaces; 2024 Oct; ():. PubMed ID: 39377117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Selectivity to H2 Formation in Decomposition of HCOOH on the Ag19@Pd60 Core-Shell Nanocluster from First-Principles.
    Cho J; Lee S; Han J; Yoon SP; Nam SW; Choi SH; Hong SA; Lee KY; Ham HC
    J Nanosci Nanotechnol; 2015 Oct; 15(10):8233-7. PubMed ID: 26726494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revisiting Formic Acid Decomposition by a Graph-Theoretical Approach.
    Ida T; Nishida M; Hori Y
    J Phys Chem A; 2019 Nov; 123(44):9579-9586. PubMed ID: 31625743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective hydrogen production from formic acid decomposition on Pd-Au bimetallic surfaces.
    Yu WY; Mullen GM; Flaherty DW; Mullins CB
    J Am Chem Soc; 2014 Aug; 136(31):11070-8. PubMed ID: 25019609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactant-Free Synthesis of Carbon-Supported Palladium Nanoparticles and Size-Dependent Hydrogen Production from Formic Acid-Formate Solution.
    Zhang S; Jiang B; Jiang K; Cai WB
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24678-24687. PubMed ID: 28658569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen Generation from Additive-Free Formic Acid Decomposition Under Mild Conditions by Pd/C: Experimental and DFT Studies.
    Sanchez F; Motta D; Roldan A; Hammond C; Villa A; Dimitratos N
    Top Catal; 2018; 61(3):254-266. PubMed ID: 30956509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Efficient Dehydrogenation of Formic Acid over Binary Palladium-Phosphorous Alloy Nanoclusters on N-Doped Carbon.
    Zhu L; Liang Y; Sun L; Wang J; Xu D
    Inorg Chem; 2021 Jul; 60(14):10707-10714. PubMed ID: 34196533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic Effect of Rutile and Brookite TiO
    Li Q; Li J; Liu Y; Zhou J; Yu X; Hou C; Liu X; Cao S; Piao L
    Inorg Chem; 2024 Aug; 63(32):15034-15043. PubMed ID: 39058545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-free dehydrogenation of formic acid to H
    Chauvier C; Tlili A; Das Neves Gomes C; Thuéry P; Cantat T
    Chem Sci; 2015 May; 6(5):2938-2942. PubMed ID: 29308170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Au-nanorod-modified PCN-222(Cu) for H
    Wang Y; Wang X; Lu H; Gu Z; Chen L
    Chem Commun (Camb); 2022 Jul; 58(61):8520-8523. PubMed ID: 35801508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chitosan-derived N-doped carbon catalysts with a metallic core for the oxidative dehydrogenation of NH-NH bonds.
    Thombal PR; Thombal RS; Han SS
    RSC Adv; 2019 Dec; 10(1):474-481. PubMed ID: 35492540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anchoring IrPdAu Nanoparticles on NH
    Luo Y; Yang Q; Nie W; Yao Q; Zhang Z; Lu ZH
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8082-8090. PubMed ID: 31986879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic insights into the dehydrogenation of formaldehyde, formic acid and methanol using the Pt
    Phan TT; Dao LTT; Giang LPT; Nguyen MT; Nguyen HMT
    J Mol Graph Model; 2022 Mar; 111():108096. PubMed ID: 34875503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.