These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37782627)

  • 1. Prion-like Aggregation of the Heptapeptide GNNQQNY into Amyloid Nanofiber Is Governed by Configuration Entropy.
    Chen Z; Xiao X; Yang L; Lian C; Xu S; Liu H
    J Chem Inf Model; 2023 Oct; 63(20):6423-6435. PubMed ID: 37782627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural stability and dynamics of an amyloid-forming peptide GNNQQNY from the yeast prion sup-35.
    Zheng J; Ma B; Tsai CJ; Nussinov R
    Biophys J; 2006 Aug; 91(3):824-33. PubMed ID: 16679374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amyloid formation characteristics of GNNQQNY from yeast prion protein Sup35 and its seeding with heterogeneous polypeptides.
    Haratake M; Takiguchi T; Masuda N; Yoshida S; Fuchigami T; Nakayama M
    Colloids Surf B Biointerfaces; 2017 Jan; 149():72-79. PubMed ID: 27736724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular structures of amyloid and prion fibrils: consensus versus controversy.
    Tycko R; Wickner RB
    Acc Chem Res; 2013 Jul; 46(7):1487-96. PubMed ID: 23294335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulations on the oligomer-formation process of the GNNQQNY peptide from yeast prion protein Sup35.
    Zhang Z; Chen H; Bai H; Lai L
    Biophys J; 2007 Sep; 93(5):1484-92. PubMed ID: 17483185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. STITCHER: Dynamic assembly of likely amyloid and prion β-structures from secondary structure predictions.
    Bryan AW; O'Donnell CW; Menke M; Cowen LJ; Lindquist S; Berger B
    Proteins; 2012 Feb; 80(2):410-20. PubMed ID: 22095906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. β-hairpin-mediated formation of structurally distinct multimers of neurotoxic prion peptides.
    Gill AC
    PLoS One; 2014; 9(1):e87354. PubMed ID: 24498083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Insights into the Dynamics of Amyloid Fibril Growth: Elongation and Lateral Assembly of GNNQQNY Protofibrils.
    John T; Rampioni A; Poger D; Mark AE
    ACS Chem Neurosci; 2024 Feb; 15(4):716-723. PubMed ID: 38235697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic selection of steric zipper patterns in the amyloid cross-beta spine.
    Park J; Kahng B; Hwang W
    PLoS Comput Biol; 2009 Sep; 5(9):e1000492. PubMed ID: 19730673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid-state NMR study of amyloid nanocrystals and fibrils formed by the peptide GNNQQNY from yeast prion protein Sup35p.
    van der Wel PC; Lewandowski JR; Griffin RG
    J Am Chem Soc; 2007 Apr; 129(16):5117-30. PubMed ID: 17397156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of GNNQQNY prion peptide aggregation by trehalose: a mechanistic view.
    Katyal N; Deep S
    Phys Chem Chem Phys; 2017 Jul; 19(29):19120-19138. PubMed ID: 28702592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural polyphenols as inhibitors of amyloid aggregation. Molecular dynamics study of GNNQQNY heptapeptide decamer.
    Berhanu WM; Masunov AE
    Biophys Chem; 2010 Jun; 149(1-2):12-21. PubMed ID: 20456856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A variational model for oligomer-formation process of GNNQQNY peptide from yeast prion protein Sup35.
    Qi X; Hong L; Zhang Y
    Biophys J; 2012 Feb; 102(3):597-605. PubMed ID: 22325283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterogeneous seeding of a prion structure by a generic amyloid form of the fungal prion-forming domain HET-s(218-289).
    Wan W; Bian W; McDonald M; Kijac A; Wemmer DE; Stubbs G
    J Biol Chem; 2013 Oct; 288(41):29604-12. PubMed ID: 23986444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multiscale approach to characterize the early aggregation steps of the amyloid-forming peptide GNNQQNY from the yeast prion sup-35.
    Nasica-Labouze J; Meli M; Derreumaux P; Colombo G; Mousseau N
    PLoS Comput Biol; 2011 May; 7(5):e1002051. PubMed ID: 21625573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic analysis of structural transitions during GNNQQNY aggregation.
    Osborne KL; Bachmann M; Strodel B
    Proteins; 2013 Jul; 81(7):1141-55. PubMed ID: 23408546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability of single sheet GNNQQNY aggregates analyzed by replica exchange molecular dynamics: antiparallel versus parallel association.
    Vitagliano L; Esposito L; Pedone C; De Simone A
    Biochem Biophys Res Commun; 2008 Dec; 377(4):1036-41. PubMed ID: 18938138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HRMAS 1H NMR conformational study of the resin-bound amyloid-forming peptide GNNQQNY from the yeast prion Sup35.
    Andrey SB; Chan ML; Power WP
    J Phys Chem A; 2010 Mar; 114(10):3457-65. PubMed ID: 20155963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing the assembly of the Sup35 yeast prion fragment, GNNQQNY: structural changes accompany a fiber-to-crystal switch.
    Marshall KE; Hicks MR; Williams TL; Hoffmann SV; Rodger A; Dafforn TR; Serpell LC
    Biophys J; 2010 Jan; 98(2):330-8. PubMed ID: 20338855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dry amyloid fibril assembly in a yeast prion peptide is mediated by long-lived structures containing water wires.
    Reddy G; Straub JE; Thirumalai D
    Proc Natl Acad Sci U S A; 2010 Dec; 107(50):21459-64. PubMed ID: 21098298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.