These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37782627)

  • 21. Alternative packing modes leading to amyloid polymorphism in five fragments studied with molecular dynamics.
    Berhanu WM; Masunov AE
    Biopolymers; 2012; 98(2):131-44. PubMed ID: 22020870
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Critical region for amyloid fibril formation of mouse prion protein: unusual amyloidogenic properties of the helix 2 peptide.
    Yamaguchi K; Matsumoto T; Kuwata K
    Biochemistry; 2008 Dec; 47(50):13242-51. PubMed ID: 19053276
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A peptide study of the relationship between the collagen triple-helix and amyloid.
    Parmar AS; Nunes AM; Baum J; Brodsky B
    Biopolymers; 2012 Oct; 97(10):795-806. PubMed ID: 22806499
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Clustering and Fibril Formation during GNNQQNY Aggregation: A Molecular Dynamics Study.
    Szała-Mendyk B; Molski A
    Biomolecules; 2020 Sep; 10(10):. PubMed ID: 32987720
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nucleation-dependent Aggregation Kinetics of Yeast Sup35 Fragment GNNQQNY.
    Burra G; Maina MB; Serpell LC; Thakur AK
    J Mol Biol; 2021 Feb; 433(3):166732. PubMed ID: 33279578
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dual binding modes of Congo red to amyloid protofibril surface observed in molecular dynamics simulations.
    Wu C; Wang Z; Lei H; Zhang W; Duan Y
    J Am Chem Soc; 2007 Feb; 129(5):1225-32. PubMed ID: 17263405
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural complexity of a composite amyloid fibril.
    Lewandowski JR; van der Wel PC; Rigney M; Grigorieff N; Griffin RG
    J Am Chem Soc; 2011 Sep; 133(37):14686-98. PubMed ID: 21766841
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-Replication of Prion Protein Fragment 89-230 Amyloid Fibrils Accelerated by Prion Protein Fragment 107-143 Aggregates.
    Sneideris T; Ziaunys M; Chu BK; Chen RP; Smirnovas V
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33049945
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dissection of conformational conversion events during prion amyloid fibril formation using hydrogen exchange and mass spectrometry.
    Singh J; Udgaonkar JB
    J Mol Biol; 2013 Sep; 425(18):3510-21. PubMed ID: 23811055
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conformational polymorphism of the amyloidogenic peptide homologous to residues 113-127 of the prion protein.
    Satheeshkumar KS; Jayakumar R
    Biophys J; 2003 Jul; 85(1):473-83. PubMed ID: 12829502
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assemblages of prion fragments: novel model systems for understanding amyloid toxicity.
    Satheeshkumar KS; Murali J; Jayakumar R
    J Struct Biol; 2004 Nov; 148(2):176-93. PubMed ID: 15477098
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular dynamic simulation of wild type and mutants of the polymorphic amyloid NNQNTF segments of elk prion: structural stability and thermodynamic of association.
    Berhanu WM; Masunov AE
    Biopolymers; 2011 Sep; 95(9):573-90. PubMed ID: 21384336
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural characterization of GNNQQNY amyloid fibrils by magic angle spinning NMR.
    van der Wel PC; Lewandowski JR; Griffin RG
    Biochemistry; 2010 Nov; 49(44):9457-69. PubMed ID: 20695483
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interplay of sequence, topology and termini charge in determining the stability of the aggregates of GNNQQNY mutants: a molecular dynamics study.
    Srivastava A; Balaji PV
    PLoS One; 2014; 9(5):e96660. PubMed ID: 24817093
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetics and mechanism of amyloid formation by the prion protein H1 peptide as determined by time-dependent ESR.
    Lundberg KM; Stenland CJ; Cohen FE; Prusiner SB; Millhauser GL
    Chem Biol; 1997 May; 4(5):345-55. PubMed ID: 9195875
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular Insight into the Effects of Enhanced Hydrophobicity on Amyloid-like Aggregation.
    Paul S; Kumari K; Paul S
    J Phys Chem B; 2020 Nov; 124(45):10048-10061. PubMed ID: 33115237
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein misfolding and amyloid formation for the peptide GNNQQNY from yeast prion protein Sup35: simulation by reaction path annealing.
    Lipfert J; Franklin J; Wu F; Doniach S
    J Mol Biol; 2005 Jun; 349(3):648-58. PubMed ID: 15896350
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of side-chain interactions in the early steps of aggregation: Molecular dynamics simulations of an amyloid-forming peptide from the yeast prion Sup35.
    Gsponer J; Haberthür U; Caflisch A
    Proc Natl Acad Sci U S A; 2003 Apr; 100(9):5154-9. PubMed ID: 12700355
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contribution of specific residues of the β-solenoid fold to HET-s prion function, amyloid structure and stability.
    Daskalov A; Gantner M; Wälti MA; Schmidlin T; Chi CN; Wasmer C; Schütz A; Ceschin J; Clavé C; Cescau S; Meier B; Riek R; Saupe SJ
    PLoS Pathog; 2014 Jun; 10(6):e1004158. PubMed ID: 24945274
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Atomic structures of amyloid cross-beta spines reveal varied steric zippers.
    Sawaya MR; Sambashivan S; Nelson R; Ivanova MI; Sievers SA; Apostol MI; Thompson MJ; Balbirnie M; Wiltzius JJ; McFarlane HT; Madsen AØ; Riekel C; Eisenberg D
    Nature; 2007 May; 447(7143):453-7. PubMed ID: 17468747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.