These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37782627)

  • 41. Predicting the aggregation propensity of prion sequences.
    Espargaró A; Busquets MA; Estelrich J; Sabate R
    Virus Res; 2015 Sep; 207():127-35. PubMed ID: 25747492
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Direct observation of protein folding, aggregation, and a prion-like conformational conversion.
    Ding F; LaRocque JJ; Dokholyan NV
    J Biol Chem; 2005 Dec; 280(48):40235-40. PubMed ID: 16204250
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Conformational plasticity of the Gerstmann-Sträussler-Scheinker disease peptide as indicated by its multiple aggregation pathways.
    Natalello A; Prokorov VV; Tagliavini F; Morbin M; Forloni G; Beeg M; Manzoni C; Colombo L; Gobbi M; Salmona M; Doglia SM
    J Mol Biol; 2008 Sep; 381(5):1349-61. PubMed ID: 18619462
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thermodynamics and kinetics of aggregation for the GNNQQNY peptide.
    Strodel B; Whittleston CS; Wales DJ
    J Am Chem Soc; 2007 Dec; 129(51):16005-14. PubMed ID: 18052168
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The architecture of amyloid-like peptide fibrils revealed by X-ray scattering, diffraction and electron microscopy.
    Langkilde AE; Morris KL; Serpell LC; Svergun DI; Vestergaard B
    Acta Crystallogr D Biol Crystallogr; 2015 Apr; 71(Pt 4):882-95. PubMed ID: 25849399
    [TBL] [Abstract][Full Text] [Related]  

  • 46. ATP modulates self-perpetuating conformational conversion generating structurally distinct yeast prion amyloids that limit autocatalytic amplification.
    Mahapatra S; Sarbahi A; Punia N; Joshi A; Avni A; Walimbe A; Mukhopadhyay S
    J Biol Chem; 2023 May; 299(5):104654. PubMed ID: 36990219
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Distinct morphological and electrophysiological properties of an elk prion peptide.
    Glaves JP; Gorski PA; Alier K; Ma L; Renault L; Primeau JO; Jhamandas JH; Young HS
    Peptides; 2013 Feb; 40():49-56. PubMed ID: 23262353
    [TBL] [Abstract][Full Text] [Related]  

  • 48. GNNQQNY--investigation of early steps during amyloid formation.
    Reddy AS; Chopra M; de Pablo JJ
    Biophys J; 2010 Mar; 98(6):1038-45. PubMed ID: 20303861
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Vibrational circular dichroism as a probe of fibrillogenesis: the origin of the anomalous intensity enhancement of amyloid-like fibrils.
    Measey TJ; Schweitzer-Stenner R
    J Am Chem Soc; 2011 Feb; 133(4):1066-76. PubMed ID: 21186804
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular dynamics simulations and free energy analyses on the dimer formation of an amyloidogenic heptapeptide from human beta2-microglobulin: implication for the protofibril structure.
    Lei H; Wu C; Wang Z; Duan Y
    J Mol Biol; 2006 Mar; 356(4):1049-63. PubMed ID: 16403526
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Computer simulation study of amyloid fibril formation by palindromic sequences in prion peptides.
    Wagoner VA; Cheon M; Chang I; Hall CK
    Proteins; 2011 Jul; 79(7):2132-45. PubMed ID: 21557317
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Amyloid-type Protein Aggregation and Prion-like Properties of Amyloids.
    Willbold D; Strodel B; Schröder GF; Hoyer W; Heise H
    Chem Rev; 2021 Jul; 121(13):8285-8307. PubMed ID: 34137605
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Stem-forming regions that are essential for the amyloidogenesis of prion proteins.
    Saiki M; Hidaka Y; Nara M; Morii H
    Biochemistry; 2012 Feb; 51(8):1566-76. PubMed ID: 22324778
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hierarchical organization in the amyloid core of yeast prion protein Ure2.
    Ngo S; Gu L; Guo Z
    J Biol Chem; 2011 Aug; 286(34):29691-9. PubMed ID: 21730048
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Steric zipper of the amyloid fibrils formed by residues 109-122 of the Syrian hamster prion protein.
    Lee SW; Mou Y; Lin SY; Chou FC; Tseng WH; Chen CH; Lu CY; Yu SS; Chan JC
    J Mol Biol; 2008 May; 378(5):1142-54. PubMed ID: 18423487
    [TBL] [Abstract][Full Text] [Related]  

  • 56. On cooperative effects and aggregation of GNNQQNY and NNQQNY peptides.
    Nochebuena J; Ireta J
    J Chem Phys; 2015 Oct; 143(13):135103. PubMed ID: 26450334
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development of the structural core and of conformational heterogeneity during the conversion of oligomers of the mouse prion protein to worm-like amyloid fibrils.
    Singh J; Sabareesan AT; Mathew MK; Udgaonkar JB
    J Mol Biol; 2012 Oct; 423(2):217-31. PubMed ID: 22789566
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Unique example of amyloid aggregates stabilized by main chain H-bond instead of the steric zipper: molecular dynamics study of the amyloidogenic segment of amylin wild-type and mutants.
    Berhanu WM; Masunov AE
    J Mol Model; 2012 Mar; 18(3):891-903. PubMed ID: 21625904
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Disulfide bond formation significantly accelerates the assembly of Ure2p fibrils because of the proximity of a potential amyloid stretch.
    Fei L; Perrett S
    J Biol Chem; 2009 Apr; 284(17):11134-41. PubMed ID: 19258323
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Polymorphism of amyloid fibrils formed by a peptide from the yeast prion protein Sup35: AFM and Tip-Enhanced Raman Scattering studies.
    Krasnoslobodtsev AV; Deckert-Gaudig T; Zhang Y; Deckert V; Lyubchenko YL
    Ultramicroscopy; 2016 Jun; 165():26-33. PubMed ID: 27060278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.