These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37782693)

  • 1. Natural Indigenous Paper Substrates for Colorimetric Bioassays in Portable Analytical Systems: Sustainable Solutions from the Rain Forests to the Great Plains.
    Brito-Pereira R; Silva Macedo A; Ribeiro C; Cardoso VF; Lanceros-Méndez S
    ACS Appl Mater Interfaces; 2023 Oct; 15(40):46747-46755. PubMed ID: 37782693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorinated Polymer Membranes as Advanced Substrates for Portable Analytical Systems and Their Proof of Concept for Colorimetric Bioassays.
    Brito-Pereira R; Macedo AS; Tubio CR; Lanceros-Méndez S; Cardoso VF
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):18065-18076. PubMed ID: 33843194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colorimetric Paper-Based Sensors against Cancer Biomarkers.
    Carneiro MCCG; Rodrigues LR; Moreira FTC; Sales MGF
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique.
    Nilghaz A; Wicaksono DH; Gustiono D; Abdul Majid FA; Supriyanto E; Abdul Kadir MR
    Lab Chip; 2012 Jan; 12(1):209-18. PubMed ID: 22089026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic toner-based analytical devices: disposable, lightweight, and portable platforms for point-of-care diagnostics with colorimetric detection.
    Oliveira KA; de Souza FR; de Oliveira CR; da Silveira LA; Coltro WK
    Methods Mol Biol; 2015; 1256():85-98. PubMed ID: 25626533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs) - A review.
    Morbioli GG; Mazzu-Nascimento T; Stockton AM; Carrilho E
    Anal Chim Acta; 2017 Jun; 970():1-22. PubMed ID: 28433054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays.
    Chiang CK; Kurniawan A; Kao CY; Wang MJ
    Talanta; 2019 Mar; 194():837-845. PubMed ID: 30609613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel combination of quick response code and microfluidic paper-based analytical devices for rapid and quantitative detection.
    Wang T; Xu G; Wu W; Wang X; Chen X; Zhou S; You F
    Biomed Microdevices; 2018 Sep; 20(3):79. PubMed ID: 30187186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Multilayered paper- and thread/paper-based microfluidic devices for bioassays.
    Neris NM; Guevara RD; Gonzalez A; Gomez FA
    Electrophoresis; 2019 Jan; 40(2):296-303. PubMed ID: 30383293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in thread-based microfluidics for diagnostic applications.
    Weng X; Kang Y; Guo Q; Peng B; Jiang H
    Biosens Bioelectron; 2019 May; 132():171-185. PubMed ID: 30875629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-cost bioanalysis on paper-based and its hybrid microfluidic platforms.
    Dou M; Sanjay ST; Benhabib M; Xu F; Li X
    Talanta; 2015 Dec; 145():43-54. PubMed ID: 26459442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Innovative Hydrophobic Valve Allows Complex Liquid Manipulations in a Self-Powered Channel-Based Microfluidic Device.
    Dal Dosso F; Tripodi L; Spasic D; Kokalj T; Lammertyn J
    ACS Sens; 2019 Mar; 4(3):694-703. PubMed ID: 30807106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paper-based analytical devices for clinical diagnosis: recent advances in the fabrication techniques and sensing mechanisms.
    Sher M; Zhuang R; Demirci U; Asghar W
    Expert Rev Mol Diagn; 2017 Apr; 17(4):351-366. PubMed ID: 28103450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in low-cost microfluidic platforms for diagnostic applications.
    Tomazelli Coltro WK; Cheng CM; Carrilho E; de Jesus DP
    Electrophoresis; 2014 Aug; 35(16):2309-24. PubMed ID: 24668896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding wax screen-printing: a novel patterning process for microfluidic cloth-based analytical devices.
    Liu M; Zhang C; Liu F
    Anal Chim Acta; 2015 Sep; 891():234-46. PubMed ID: 26388382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanomaterials integrated with microfluidic paper-based analytical devices for enzyme-free glucose quantification.
    Khachornsakkul K; Rybicki FJ; Sonkusale S
    Talanta; 2023 Aug; 260():124538. PubMed ID: 37087948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beyond Wax Printing: Fabrication of Paper-Based Microfluidic Devices Using a Thermal Transfer Printer.
    Ruiz RA; Gonzalez JL; Vazquez-Alvarado M; Martinez NW; Martinez AW
    Anal Chem; 2022 Jun; 94(25):8833-8837. PubMed ID: 35694851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of cellophane as platform for colorimetric assays on microfluidic analytical devices.
    Shigemori H; Maejima K; Shibata H; Hiruta Y; Citterio D
    Mikrochim Acta; 2023 Jan; 190(2):48. PubMed ID: 36622479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prospects of Microfluidic Technology in Nucleic Acid Detection Approaches.
    Mumtaz Z; Rashid Z; Ali A; Arif A; Ameen F; AlTami MS; Yousaf MZ
    Biosensors (Basel); 2023 May; 13(6):. PubMed ID: 37366949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic devices based on textile threads for analytical applications: state of the art and prospects.
    Agustini D; Caetano FR; Quero RF; Fracassi da Silva JA; Bergamini MF; Marcolino-Junior LH; de Jesus DP
    Anal Methods; 2021 Oct; 13(41):4830-4857. PubMed ID: 34647544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.