These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 37782765)
1. Characterizing Protein-Protein Interactions and Viscosity of a Monoclonal Antibody from Low to High Concentration Using Small-Angle X-ray Scattering and Molecular Dynamics Simulations. Chowdhury AA; Manohar N; Lanzaro A; Kimball WD; Witek MA; Woldeyes MA; Majumdar R; Qian KK; Xu S; Gillilan RE; Huang Q; Truskett TM; Johnston KP Mol Pharm; 2023 Nov; 20(11):5563-5578. PubMed ID: 37782765 [TBL] [Abstract][Full Text] [Related]
2. Subclass Effects on Self-Association and Viscosity of Monoclonal Antibodies at High Concentrations. Chowdhury AA; Manohar N; Witek MA; Woldeyes MA; Majumdar R; Qian KK; Kimball WD; Xu S; Lanzaro A; Truskett TM; Johnston KP Mol Pharm; 2023 Jun; 20(6):2991-3008. PubMed ID: 37191356 [TBL] [Abstract][Full Text] [Related]
3. X-ray Scattering and Coarse-Grained Simulations for Clustering and Interactions of Monoclonal Antibodies at High Concentrations. Dear BJ; Bollinger JA; Chowdhury A; Hung JJ; Wilks LR; Karouta CA; Ramachandran K; Shay TY; Nieto MP; Sharma A; Cheung JK; Nykypanchuk D; Godfrin PD; Johnston KP; Truskett TM J Phys Chem B; 2019 Jun; 123(25):5274-5290. PubMed ID: 31146525 [TBL] [Abstract][Full Text] [Related]
4. Coarse-Grained Molecular Dynamics Simulations for Understanding the Impact of Short-Range Anisotropic Attractions on Structure and Viscosity of Concentrated Monoclonal Antibody Solutions. Chowdhury A; Bollinger JA; Dear BJ; Cheung JK; Johnston KP; Truskett TM Mol Pharm; 2020 May; 17(5):1748-1756. PubMed ID: 32101441 [TBL] [Abstract][Full Text] [Related]
5. Characterizing Experimental Monoclonal Antibody Interactions and Clustering Using a Coarse-Grained Simulation Library and a Viscosity Model. Chowdhury A; Manohar N; Guruprasad G; Chen AT; Lanzaro A; Blanco M; Johnston KP; Truskett TM J Phys Chem B; 2023 Feb; 127(5):1120-1137. PubMed ID: 36716270 [TBL] [Abstract][Full Text] [Related]
6. Protein-Protein Interactions, Clustering, and Rheology for Bovine IgG up to High Concentrations Characterized by Small Angle X-Ray Scattering and Molecular Dynamics Simulations. Chowdhury A; Guruprasad G; Chen AT; Karouta CA; Blanco MA; Truskett TM; Johnston KP J Pharm Sci; 2020 Jan; 109(1):696-708. PubMed ID: 31726055 [TBL] [Abstract][Full Text] [Related]
7. Cluster Size and Quinary Structure Determine the Rheological Effects of Antibody Self-Association at High Concentrations. Wang W; Lilyestrom WG; Hu ZY; Scherer TM J Phys Chem B; 2018 Feb; 122(7):2138-2154. PubMed ID: 29359938 [TBL] [Abstract][Full Text] [Related]
8. Studying Excipient Modulated Physical Stability and Viscosity of Monoclonal Antibody Formulations Using Small-Angle Scattering. Xu AY; Castellanos MM; Mattison K; Krueger S; Curtis JE Mol Pharm; 2019 Oct; 16(10):4319-4338. PubMed ID: 31487466 [TBL] [Abstract][Full Text] [Related]
9. Quantitative Correlation between Viscosity of Concentrated MAb Solutions and Particle Size Parameters Obtained from Small-Angle X-ray Scattering. Fukuda M; Moriyama C; Yamazaki T; Imaeda Y; Koga A Pharm Res; 2015 Dec; 32(12):3803-12. PubMed ID: 26078002 [TBL] [Abstract][Full Text] [Related]
10. Self-Interactions of Two Monoclonal Antibodies: Small-Angle X-ray Scattering, Light Scattering, and Coarse-Grained Modeling. Mahapatra S; Polimeni M; Gentiluomo L; Roessner D; Frieß W; Peters GHJ; Streicher WW; Lund M; Harris P Mol Pharm; 2022 Feb; 19(2):508-519. PubMed ID: 34939811 [TBL] [Abstract][Full Text] [Related]
11. Observation of small cluster formation in concentrated monoclonal antibody solutions and its implications to solution viscosity. Yearley EJ; Godfrin PD; Perevozchikova T; Zhang H; Falus P; Porcar L; Nagao M; Curtis JE; Gawande P; Taing R; Zarraga IE; Wagner NJ; Liu Y Biophys J; 2014 Apr; 106(8):1763-70. PubMed ID: 24739175 [TBL] [Abstract][Full Text] [Related]
12. Highly viscous antibody solutions are a consequence of network formation caused by domain-domain electrostatic complementarities: insights from coarse-grained simulations. Buck PM; Chaudhri A; Kumar S; Singh SK Mol Pharm; 2015 Jan; 12(1):127-39. PubMed ID: 25383990 [TBL] [Abstract][Full Text] [Related]
13. Rational design of viscosity reducing mutants of a monoclonal antibody: hydrophobic versus electrostatic inter-molecular interactions. Nichols P; Li L; Kumar S; Buck PM; Singh SK; Goswami S; Balthazor B; Conley TR; Sek D; Allen MJ MAbs; 2015; 7(1):212-30. PubMed ID: 25559441 [TBL] [Abstract][Full Text] [Related]
14. Small-scale screening method for low-viscosity antibody solutions using small-angle X-ray scattering. Fukuda M; Watanabe A; Hayasaka A; Muraoka M; Hori Y; Yamazaki T; Imaeda Y; Koga A Eur J Pharm Biopharm; 2017 Mar; 112():132-137. PubMed ID: 27890509 [TBL] [Abstract][Full Text] [Related]
15. High shear rheology and anisotropy in concentrated solutions of monoclonal antibodies. Zarraga IE; Taing R; Zarzar J; Luoma J; Hsiung J; Patel A; Lim FJ J Pharm Sci; 2013 Aug; 102(8):2538-49. PubMed ID: 23873347 [TBL] [Abstract][Full Text] [Related]
16. Coarse-Grained Modeling of Antibodies from Small-Angle Scattering Profiles. Corbett D; Hebditch M; Keeling R; Ke P; Ekizoglou S; Sarangapani P; Pathak J; Van Der Walle CF; Uddin S; Baldock C; Avendaño C; Curtis RA J Phys Chem B; 2017 Sep; 121(35):8276-8290. PubMed ID: 28796519 [TBL] [Abstract][Full Text] [Related]
17. Effect of Hierarchical Cluster Formation on the Viscosity of Concentrated Monoclonal Antibody Formulations Studied by Neutron Scattering. Godfrin PD; Zarraga IE; Zarzar J; Porcar L; Falus P; Wagner NJ; Liu Y J Phys Chem B; 2016 Jan; 120(2):278-91. PubMed ID: 26707135 [TBL] [Abstract][Full Text] [Related]
18. Biophysical Determinants for the Viscosity of Concentrated Monoclonal Antibody Solutions. Mosca I; Pounot K; Beck C; Colin L; Matsarskaia O; Grapentin C; Seydel T; Schreiber F Mol Pharm; 2023 Sep; 20(9):4698-4713. PubMed ID: 37549226 [TBL] [Abstract][Full Text] [Related]