These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37782893)

  • 1. Metabolic Engineering of
    Zhang X; Chen S; Lin Y; Li W; Wang D; Ruan S; Yang Y; Liang S
    ACS Synth Biol; 2023 Oct; 12(10):2961-2972. PubMed ID: 37782893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of lycopene by metabolically engineered
    Zhang X; Wang D; Duan Y; Zheng X; Lin Y; Liang S
    Biosci Biotechnol Biochem; 2020 Mar; 84(3):463-470. PubMed ID: 31752618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic Metabolic Engineering of
    Shi B; Ma T; Ye Z; Li X; Huang Y; Zhou Z; Ding Y; Deng Z; Liu T
    J Agric Food Chem; 2019 Oct; 67(40):11148-11157. PubMed ID: 31532654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A versatile toolbox for CRISPR-based genome engineering in Pichia pastoris.
    Liao X; Li L; Jameel A; Xing XH; Zhang C
    Appl Microbiol Biotechnol; 2021 Dec; 105(24):9211-9218. PubMed ID: 34773154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel and Efficient Genome Editing Tool Assisted by CRISPR-Cas12a/Cpf1 for
    Zhang X; Gu S; Zheng X; Peng S; Li Y; Lin Y; Liang S
    ACS Synth Biol; 2021 Nov; 10(11):2927-2937. PubMed ID: 34644057
    [No Abstract]   [Full Text] [Related]  

  • 6. Metabolic engineering of Pichia pastoris for myo-inositol production by dynamic regulation of central metabolism.
    Zhang Q; Wang X; Luo H; Wang Y; Wang Y; Tu T; Qin X; Su X; Huang H; Yao B; Bai Y; Zhang J
    Microb Cell Fact; 2022 Jun; 21(1):112. PubMed ID: 35659241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expanding the CRISPR Toolbox for Engineering Lycopene Biosynthesis in
    Zhan Z; Chen X; Ye Z; Zhao M; Li C; Gao S; Sinskey AJ; Yao L; Dai J; Jiang Y; Zheng X
    Microorganisms; 2024 Apr; 12(4):. PubMed ID: 38674747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo biosynthesis of 2-phenylethanol in engineered Pichia pastoris.
    Kong S; Pan H; Liu X; Li X; Guo D
    Enzyme Microb Technol; 2020 Feb; 133():109459. PubMed ID: 31874694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual Regulation of Cytoplasm and Peroxisomes for Improved Α-Farnesene Production in Recombinant
    Liu H; Chen SL; Xu JZ; Zhang WG
    ACS Synth Biol; 2021 Jun; 10(6):1563-1573. PubMed ID: 34080850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene.
    Ma T; Shi B; Ye Z; Li X; Liu M; Chen Y; Xia J; Nielsen J; Deng Z; Liu T
    Metab Eng; 2019 Mar; 52():134-142. PubMed ID: 30471360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Pichia pastoris.
    Peña DA; Gasser B; Zanghellini J; Steiger MG; Mattanovich D
    Metab Eng; 2018 Nov; 50():2-15. PubMed ID: 29704654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Pichia pastoris for the production of dammarenediol-II.
    Liu XB; Liu M; Tao XY; Zhang ZX; Wang FQ; Wei DZ
    J Biotechnol; 2015 Dec; 216():47-55. PubMed ID: 26467715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-level phenol bioproduction by engineered Pichia pastoris in glycerol fed-batch fermentation using an efficient pertraction system.
    Kumokita R; Bamba T; Yasueda H; Tsukida A; Nakagawa K; Kitagawa T; Yoshioka T; Matsuyama H; Yamamoto Y; Maruyama S; Hayashi T; Kondo A; Hasunuma T
    Bioresour Technol; 2024 Feb; 393():130144. PubMed ID: 38042432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel homologous lactate transporter improves L-lactic acid production from glycerol in recombinant strains of Pichia pastoris.
    de Lima PB; Mulder KC; Melo NT; Carvalho LS; Menino GS; Mulinari E; de Castro VH; Dos Reis TF; Goldman GH; Magalhães BS; Parachin NS
    Microb Cell Fact; 2016 Sep; 15(1):158. PubMed ID: 27634467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering.
    Chen Y; Xiao W; Wang Y; Liu H; Li X; Yuan Y
    Microb Cell Fact; 2016 Jun; 15(1):113. PubMed ID: 27329233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of an l-Tyrosine Chassis in
    Kumokita R; Bamba T; Inokuma K; Yoshida T; Ito Y; Kondo A; Hasunuma T
    ACS Synth Biol; 2022 Jun; 11(6):2098-2107. PubMed ID: 35575690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene and process level modulation to overcome the bottlenecks of recombinant proteins expression in Pichia pastoris.
    Prabhu AA; Boro B; Bharali B; Chakraborty S; Dasu VV
    Curr Pharm Biotechnol; 2017; 18(15):1200-1223. PubMed ID: 29595107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-level secretory production of leghemoglobin in Pichia pastoris through enhanced globin expression and heme biosynthesis.
    Shao Y; Xue C; Liu W; Zuo S; Wei P; Huang L; Lian J; Xu Z
    Bioresour Technol; 2022 Nov; 363():127884. PubMed ID: 36067892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards systems metabolic engineering in Pichia pastoris.
    Schwarzhans JP; Luttermann T; Geier M; Kalinowski J; Friehs K
    Biotechnol Adv; 2017 Nov; 35(6):681-710. PubMed ID: 28760369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathway reconstruction and metabolic engineering for the de novo and enhancing production of monacolin J in Pichia pastoris.
    Wu Y; Peng X; Fan D; Han S; Yang X
    Bioprocess Biosyst Eng; 2024 Nov; 47(11):1789-1801. PubMed ID: 39085651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.