These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37783010)

  • 1. Design and synthesis of п-conjugated aromatic heterocyclic materials with dual active sites and ultra-high rate performance for aqueous zinc-organic batteries.
    Wang J; Huang L; Li J; Lv H; Chen L; Xie H; Wang G; Gu T
    J Colloid Interface Sci; 2024 Jan; 653(Pt B):1103-1111. PubMed ID: 37783010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anhydride-Based Compound with Tunable Redox Properties as Advanced Organic Cathodes for High-Performance Aqueous Zinc-Ion Batteries.
    Wang J; Lv H; Huang L; Li J; Xie H; Wang G; Gu T
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49447-49457. PubMed ID: 37846901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Organic Cathode with Conjugated N-Heteroaromatic Structures for High-Performance Aqueous Zinc-Ion Batteries.
    Li J; Huang L; Lv H; Wang J; Wang G; Chen L; Liu Y; Guo W; Yu F; Gu T
    ACS Appl Mater Interfaces; 2022 Aug; 14(34):38844-38853. PubMed ID: 35975905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Sulfur Heterocyclic Quinone Cathode Towards High-Rate and Long-Cycle Aqueous Zn-Organic Batteries.
    Sun QQ; Sun T; Du JY; Li K; Xie HM; Huang G; Zhang XB
    Adv Mater; 2023 Jun; 35(22):e2301088. PubMed ID: 37036047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-Dimensional π-d Conjugated Conductive Metal-Organic Framework with Dual Redox-Active Sites for High-Capacity and Durable Cathodes for Aqueous Zinc Batteries.
    Sang Z; Liu J; Zhang X; Yin L; Hou F; Liang J
    ACS Nano; 2023 Feb; 17(3):3077-3087. PubMed ID: 36688450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A covalent organic framework as a dual-active-center cathode for a high-performance aqueous zinc-ion battery.
    Li H; Cao M; Fu Z; Ma Q; Zhang L; Wang R; Liang F; Zhou T; Zhang C
    Chem Sci; 2024 Mar; 15(12):4341-4348. PubMed ID: 38516068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Synthesis of a π-Conjugated N-Heteroaromatic Material for Aqueous Zinc-Organic Batteries with Ultrahigh Rate and Extremely Long Life.
    Li S; Shang J; Li M; Xu M; Zeng F; Yin H; Tang Y; Han C; Cheng HM
    Adv Mater; 2023 Dec; 35(50):e2207115. PubMed ID: 36177698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boosting the zinc storage of a small-molecule organic cathode by a desalinization strategy.
    Wang W; Tang Y; Liu J; Li H; Wang R; Zhang L; Liang F; Bai W; Zhang L; Zhang C
    Chem Sci; 2023 Aug; 14(34):9033-9040. PubMed ID: 37655030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical Performance and Mechanism of Bimetallic Organic Framework for Advanced Aqueous Zn Ion Batteries.
    Lv H; Wang J; Gao X; Wang Y; Shen Y; Liu P; Wang G; Chen L; Gu T
    ACS Appl Mater Interfaces; 2023 Oct; 15(40):47094-47102. PubMed ID: 37769112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygenated copper vanadium selenide composite nanostructures as a cathode material for zinc-ion batteries with high stability up to 10 000 cycles.
    Narsimulu D; Krishna BNV; Shanthappa R; Yu JS
    Nanoscale; 2023 Feb; 15(8):3978-3990. PubMed ID: 36723257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Anti-Aromatic Covalent Organic Framework Cathode with Dual-Redox Centers for Rechargeable Aqueous Zinc Batteries.
    Lin Z; Lin L; Zhu J; Wu W; Yang X; Sun X
    ACS Appl Mater Interfaces; 2022 Aug; 14(34):38689-38695. PubMed ID: 35975747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Freestanding, Hierarchical, and Porous Bilayered Na
    Xu G; Liu X; Huang S; Li L; Wei X; Cao J; Yang L; Chu PK
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):706-716. PubMed ID: 31799821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical spheroidal MOF-derived MnO@C as cathode components for high-performance aqueous zinc ion batteries.
    Yin C; Pan C; Pan Y; Hu J
    J Colloid Interface Sci; 2023 Jul; 642():513-522. PubMed ID: 37028158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Polymer/Graphene Composite Cathode with Active Carbonyls and Secondary Amine Moieties for High-Performance Aqueous Zn-Organic Batteries Involving Dual-Ion Mechanism.
    Zhang H; Xu D; Wang L; Ye Z; Chen B; Pei L; Wang Z; Cao Z; Shen J; Ye M
    Small; 2021 Jun; 17(25):e2100902. PubMed ID: 34028987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sandwich-Like Heterostructures of MoS
    Li S; Liu Y; Zhao X; Shen Q; Zhao W; Tan Q; Zhang N; Li P; Jiao L; Qu X
    Adv Mater; 2021 Mar; 33(12):e2007480. PubMed ID: 33598960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vanadium Hexacyanoferrate as a High-Capacity and High-Voltage Cathode for Aqueous Rechargeable Zinc Ion Batteries.
    Zhang S; Pang Q; Ai Y; He W; Fu Y; Xing M; Tian Y; Luo X
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical Porous Metallic V
    Ding Y; Peng Y; Chen S; Zhang X; Li Z; Zhu L; Mo LE; Hu L
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44109-44117. PubMed ID: 31687795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel aluminum vanadate as a cathode material for high-performance aqueous zinc-ion batteries.
    Liu G; Xiao Y; Zhang W; Tang W; Zuo C; Zhang P; Dong S; Luo P
    Nanotechnology; 2021 May; 32(31):. PubMed ID: 33906187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Engineering Design for High-Performance Aqueous Zinc-Organic Battery.
    Sun T; Zhang W; Nian Q; Tao Z
    Nanomicro Lett; 2023 Jan; 15(1):36. PubMed ID: 36637697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of Ti
    Liu M; Zhu K; Wan K; Zhang X; Wei J; Hou Y; Tang H
    ACS Appl Mater Interfaces; 2023 Jun; 15(23):28073-28083. PubMed ID: 37253255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.