These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37783010)

  • 41. Molecular structure design of planar zwitterionic polymer electrode materials for all-organic symmetric batteries.
    Wang J; Liu H; Du C; Liu Y; Liu B; Guan H; Guan S; Sun Z; Yao H
    Chem Sci; 2022 Oct; 13(39):11614-11622. PubMed ID: 36320387
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Preparation and electrochemical performance of VO
    Li R; Yu X; Bian X; Hu F
    RSC Adv; 2019 Oct; 9(60):35117-35123. PubMed ID: 35530719
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-Capacity and Long-Lifespan Aqueous LiV
    Pang Q; Yu X; Zhang S; He W; Yang S; Fu Y; Tian Y; Xing M; Luo X
    Nanomaterials (Basel); 2021 May; 11(6):. PubMed ID: 34071576
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hydrogen Bond Shielding Effect for High-Performance Aqueous Zinc Ion Batteries.
    Sun T; Zheng S; Nian Q; Tao Z
    Small; 2022 Mar; 18(12):e2107115. PubMed ID: 35098639
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A High-Potential Bipolar Phenothiazine Derivative Cathode for Aqueous Zinc Batteries.
    Wang Y; Qiu S; He D; Guo J; Zhao M; Zheng C; Wang X; Wang C
    ChemSusChem; 2023 Oct; 16(19):e202300658. PubMed ID: 37491683
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mg ion pre-intercalated MnO
    Xu P; Yi H; Shi G; Xiong Z; Hu Y; Wang R; Zhang H; Wang B
    Dalton Trans; 2022 Mar; 51(12):4695-4703. PubMed ID: 35225314
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Anchoring π-d Conjugated Metal-Organic Frameworks with Dual-Active Centers on Carbon Nanotubes for Advanced Potassium-Ion Batteries.
    Wang J; Jia H; Liu Z; Yu J; Cheng L; Wang HG; Cui F; Zhu G
    Adv Mater; 2024 Feb; 36(6):e2305605. PubMed ID: 37566706
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Defective construction of vanadium-based cathode materials for high-rate long-cycle aqueous zinc ion batteries.
    Ran K; Chen Q; Song F; Yang F
    J Colloid Interface Sci; 2024 Jan; 653(Pt A):673-686. PubMed ID: 37741175
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrochemically stable tunnel-type α-MnO
    De Luna Y; Alsulaiti A; Ahmad MI; Nimir H; Bensalah N
    Front Chem; 2023; 11():1101459. PubMed ID: 36762193
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Organic-Inorganic Hybrid Cathode with Dual Energy-Storage Mechanism for Ultrahigh-Rate and Ultralong-Life Aqueous Zinc-Ion Batteries.
    Ma X; Cao X; Yao M; Shan L; Shi X; Fang G; Pan A; Lu B; Zhou J; Liang S
    Adv Mater; 2022 Feb; 34(6):e2105452. PubMed ID: 34786778
    [TBL] [Abstract][Full Text] [Related]  

  • 51. δ-VOPO
    Zhao D; Pu X; Tang S; Ding M; Zeng Y; Cao Y; Chen Z
    Chem Sci; 2023 Aug; 14(30):8206-8213. PubMed ID: 37538828
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ultralong-Life Cathode for Aqueous Zinc-Organic Batteries via Pouring 9,10-Phenanthraquinone into Active Carbon.
    Yang B; Ma Y; Bin D; Lu H; Xia Y
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58818-58826. PubMed ID: 34846135
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-performance reversible aqueous Zinc-Ion battery based on Zn
    Jing F; Pei J; Zhou Y; Shang Y; Yao S; Liu S; Chen G
    J Colloid Interface Sci; 2022 Mar; 609():557-565. PubMed ID: 34802771
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Anthraquinone porous polymers with different linking patterns for high performance Zinc-Organic battery.
    Wang X; Wang G; He X
    J Colloid Interface Sci; 2023 Jan; 629(Pt A):434-444. PubMed ID: 36087556
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Boosting the capacity and stability of a MoO
    He Y; Xue W; Huang Y; Tang H; Wang G; Zheng D; Xu W; Wang F; Lu X
    RSC Adv; 2023 May; 13(22):15295-15301. PubMed ID: 37213338
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High-Performance Aqueous Zinc-Ion Battery Based on Layered H
    He P; Quan Y; Xu X; Yan M; Yang W; An Q; He L; Mai L
    Small; 2017 Dec; 13(47):. PubMed ID: 29152849
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Investigation of a Biomass Hydrogel Electrolyte Naturally Stabilizing Cathodes for Zinc-Ion Batteries.
    Dong H; Li J; Zhao S; Jiao Y; Chen J; Tan Y; Brett DJL; He G; Parkin IP
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):745-754. PubMed ID: 33370108
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Valid design and evaluation of cathode and anode materials of aqueous zinc ion batteries with high-rate capability and cycle stability.
    Lee SH; Han J; Cho TW; Kim GH; Yoo YJ; Park J; Kim YJ; Lee EJ; Lee S; Mhin S; Park SY; Yoo J; Lee SH
    Nanoscale; 2023 Feb; 15(8):3737-3748. PubMed ID: 36744925
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Robust VS
    Chen K; Li X; Zang J; Zhang Z; Wang Y; Lou Q; Bai Y; Fu J; Zhuang C; Zhang Y; Zhang L; Dai S; Shan C
    Nanoscale; 2021 Jul; 13(28):12370-12378. PubMed ID: 34254619
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Boosting the Cycling Stability of Aqueous Zinc-Ion Batteries through Nanofibrous Coating of a Bead-like MnO
    Ding L; Gao J; Yan T; Cheng C; Chang LY; Zhang N; Feng X; Zhang L
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17570-17577. PubMed ID: 35390250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.