BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37783130)

  • 1. Degradation of glucosinolates and formation of isothiocyanates, nitriles, amines, and N,N'-dialk(en)yl thioureas during domestic boiling of red cabbage.
    Renz M; Andernach L; Kaufmann M; Rohn S; Hanschen FS
    Food Chem; 2024 Mar; 435():137550. PubMed ID: 37783130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acidification and tissue disruption affect glucosinolate and S-methyl-l-cysteine sulfoxide hydrolysis and formation of amines, isothiocyanates and other organosulfur compounds in red cabbage (Brassica oleracea var. capitata f. rubra).
    Hanschen FS
    Food Res Int; 2024 Feb; 178():114004. PubMed ID: 38309927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Domestic boiling and salad preparation habits affect glucosinolate degradation in red cabbage (Brassica oleracea var. capitata f. rubra).
    Hanschen FS
    Food Chem; 2020 Aug; 321():126694. PubMed ID: 32244140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucosinolate-derived amine formation in Brassica oleracea vegetables.
    Andernach L; Witzel K; Hanschen FS
    Food Chem; 2023 Mar; 405(Pt B):134907. PubMed ID: 36417803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant matrix concentration and redox status influence thermal glucosinolate stability and formation of nitriles in selected Brassica vegetable broths.
    Renz M; Dekker M; Rohn S; Hanschen FS
    Food Chem; 2023 Mar; 404(Pt A):134594. PubMed ID: 36265272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leaching and degradation kinetics of glucosinolates during boiling of Brassica oleracea vegetables and the formation of their breakdown products.
    Hanschen FS; Kühn C; Nickel M; Rohn S; Dekker M
    Food Chem; 2018 Oct; 263():240-250. PubMed ID: 29784313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brassica vegetables as sources of epithionitriles: Novel secondary products formed during cooking.
    Hanschen FS; Kaufmann M; Kupke F; Hackl T; Kroh LW; Rohn S; Schreiner M
    Food Chem; 2018 Apr; 245():564-569. PubMed ID: 29287410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of storage, processing and cooking on glucosinolate content of Brassica vegetables.
    Song L; Thornalley PJ
    Food Chem Toxicol; 2007 Feb; 45(2):216-24. PubMed ID: 17011103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isothiocyanates, Nitriles, and Epithionitriles from Glucosinolates Are Affected by Genotype and Developmental Stage in
    Hanschen FS; Schreiner M
    Front Plant Sci; 2017; 8():1095. PubMed ID: 28690627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermally induced degradation of aliphatic glucosinolates: identification of intermediary breakdown products and proposed degradation pathways.
    Hanschen FS; Bauer A; Mewis I; Keil C; Schreiner M; Rohn S; Kroh LW
    J Agric Food Chem; 2012 Oct; 60(39):9890-9. PubMed ID: 22958137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Impact of Domestic Cooking Methods on Myrosinase Stability, Glucosinolates and Their Hydrolysis Products in Different Cabbage (
    Oloyede OO; Wagstaff C; Methven L
    Foods; 2021 Nov; 10(12):. PubMed ID: 34945460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal degradation and oxidation of glucosinolates in model systems and Brassica vegetable broth is mediated by redox-active compounds.
    Renz M; Rohn S; Hanschen FS
    Food Chem; 2024 Jan; 431():137108. PubMed ID: 37595380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel transformation products from glucosinolate-derived thioglucose and isothiocyanates formed during cooking.
    Hoffmann H; Andernach L; Kanzler C; Hanschen FS
    Food Res Int; 2022 Jul; 157():111237. PubMed ID: 35761548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Cabbage (
    Oloyede OO; Wagstaff C; Methven L
    Foods; 2021 Nov; 10(12):. PubMed ID: 34945451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of important glucosinolates in three common Brassica vegetables during their processing into vegetable powder and in vitro gastric digestion.
    Kuljarachanan T; Fu N; Chiewchan N; Devahastin S; Chen XD
    Food Funct; 2020 Jan; 11(1):211-220. PubMed ID: 31915766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of changes in glucosinolate concentrations during long-term cooking of white cabbage (Brassica oleracea L. ssp. capitata f. alba).
    Volden J; Wicklund T; Verkerk R; Dekker M
    J Agric Food Chem; 2008 Mar; 56(6):2068-73. PubMed ID: 18303838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genotypic Variation of Glucosinolates and Their Breakdown Products in Leaves of Brassica rapa.
    Klopsch R; Witzel K; Artemyeva A; Ruppel S; Hanschen FS
    J Agric Food Chem; 2018 Jun; 66(22):5481-5490. PubMed ID: 29746112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of long-term storage on glucosinolate and S-methyl-l-cysteine sulfoxide hydrolysis in cabbage (Brassica oleracea var. capitata).
    Andernach L; Witzel K; Hanschen FS
    Food Chem; 2024 Jan; 430():136969. PubMed ID: 37531915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of glucosinolates, isothiocyanates, and amine degradation products in vegetable extracts and blood plasma by LC-MS/MS.
    Song L; Morrison JJ; Botting NP; Thornalley PJ
    Anal Biochem; 2005 Dec; 347(2):234-43. PubMed ID: 16289008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of processing and cooking on glucoraphanin and sulforaphane in brassica vegetables.
    Sun J; Wang Y; Pang X; Tian S; Hu Q; Li X; Liu J; Wang J; Lu Y
    Food Chem; 2021 Oct; 360():130007. PubMed ID: 33993075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.