These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 37783137)
1. Cross-interaction of volatiles in fast co-pyrolysis of waste tyre and corn stover via TG-FTIR and rapid infrared heating techniques. Li C; Liu Z; Yu J; Hu E; Zeng Y; Tian Y Waste Manag; 2023 Sep; 171():421-432. PubMed ID: 37783137 [TBL] [Abstract][Full Text] [Related]
2. Pyrolysis behaviors of anaerobic digestion residues in a fixed-bed reactor with rapid infrared heating. Hu E; Li M; Tian Y; Yi X; Dai C; Shao S; Li C; Zhao Y Environ Sci Pollut Res Int; 2022 Jul; 29(34):51815-51826. PubMed ID: 35257338 [TBL] [Abstract][Full Text] [Related]
3. Fast co-pyrolysis behaviors and synergistic effects of corn stover and polyethylene via rapid infrared heating. Dai C; Hu E; Yang Y; Li M; Li C; Zeng Y Waste Manag; 2023 Sep; 169():147-156. PubMed ID: 37442035 [TBL] [Abstract][Full Text] [Related]
4. Pyrolysis Kinetic Behaviour of Glass Fibre-Reinforced Epoxy Resin Composites Using Linear and Nonlinear Isoconversional Methods. Yousef S; Eimontas J; Striūgas N; Praspaliauskas M; Abdelnaby MA Polymers (Basel); 2021 May; 13(10):. PubMed ID: 34064980 [TBL] [Abstract][Full Text] [Related]
5. Fast pyrolysis characteristics and its mechanism of corn stover over iron oxide via quick infrared heating. Li M; Hu E; Tian Y; Yang Y; Dai C; Li C Waste Manag; 2022 Jul; 149():60-69. PubMed ID: 35724609 [TBL] [Abstract][Full Text] [Related]
6. Pyrolytic kinetics, reaction mechanisms and gas emissions of waste automotive paint sludge via TG-FTIR and Py-GC/MS. Tian L; Liu T; Yang J; Yang H; Liu Z; Zhao Y; Huang Q; Huang Z J Environ Manage; 2023 Feb; 328():116962. PubMed ID: 36470002 [TBL] [Abstract][Full Text] [Related]
7. A study on catalytic co-pyrolysis of kitchen waste with tire waste over ZSM-5 using TG-FTIR and Py-GC/MS. Chen J; Ma X; Yu Z; Deng T; Chen X; Chen L; Dai M Bioresour Technol; 2019 Oct; 289():121585. PubMed ID: 31207410 [TBL] [Abstract][Full Text] [Related]
8. Carbon nanotubes production from real-world waste plastics and the pyrolysis behaviour. Zhu Y; Miao J; Zhang Y; Li C; Wang Y; Cheng Y; Long M; Wang J; Wu C Waste Manag; 2023 Jul; 166():141-151. PubMed ID: 37172515 [TBL] [Abstract][Full Text] [Related]
9. Pyrolysis Kinetic Study and Reaction Mechanism of Epoxy Glass Fiber Reinforced Plastic by Thermogravimetric Analyzer (TG) and TG-FTIR (Fourier-Transform Infrared) Techniques. Qiao Y; Das O; Zhao SN; Sun TS; Xu Q; Jiang L Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33218170 [TBL] [Abstract][Full Text] [Related]
10. Kinetics, thermodynamics, and physical characterization of corn stover (Zea mays) for solar biomass pyrolysis potential analysis. Rony AH; Kong L; Lu W; Dejam M; Adidharma H; Gasem KAM; Zheng Y; Norton U; Fan M Bioresour Technol; 2019 Jul; 284():466-473. PubMed ID: 30986754 [TBL] [Abstract][Full Text] [Related]
11. Characteristics and kinetics study of simultaneous pyrolysis of microalgae Chlorella vulgaris, wood and polypropylene through TGA. Azizi K; Keshavarz Moraveji M; Abedini Najafabadi H Bioresour Technol; 2017 Nov; 243():481-491. PubMed ID: 28689141 [TBL] [Abstract][Full Text] [Related]
12. Assessment of thermokinetic behaviour of tannery sludge in slow pyrolysis process through artificial neural network. Khan A; Ali I; Naqvi SR; AlMohamadi H; Shahbaz M; Ali AM; Shahzad K Chemosphere; 2023 Oct; 337():139226. PubMed ID: 37379972 [TBL] [Abstract][Full Text] [Related]
13. Kinetic analysis and pyrolysis behaviour of waste biomass towards its bioenergy potential. Mishra RK; Mohanty K Bioresour Technol; 2020 Sep; 311():123480. PubMed ID: 32413639 [TBL] [Abstract][Full Text] [Related]
14. Pyrolytic characteristics of fine materials from municipal solid waste using TG-FTIR, Py-GC/MS, and deep learning approach: Kinetics, thermodynamics, and gaseous products distribution. Lin K; Tian L; Zhao Y; Zhao C; Zhang M; Zhou T Chemosphere; 2022 Apr; 293():133533. PubMed ID: 34998842 [TBL] [Abstract][Full Text] [Related]
15. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Mishra RK; Mohanty K Bioresour Technol; 2018 Mar; 251():63-74. PubMed ID: 29272770 [TBL] [Abstract][Full Text] [Related]
16. Thermal analysis technology to utilize waste biomass and waste heat to produce high-quality combustible gas through simulations and experiments. Song W; Chen X; Huang Y; Jiang R; Zhou J Sci Total Environ; 2023 Sep; 892():163970. PubMed ID: 37164073 [TBL] [Abstract][Full Text] [Related]
17. Pyrolysis kinetics behavior of solid leather wastes. Guan Y; Liu C; Peng Q; Zaman F; Zhang H; Jin Z; Wang A; Wang W; Huang Y Waste Manag; 2019 Dec; 100():122-127. PubMed ID: 31536922 [TBL] [Abstract][Full Text] [Related]
18. Co-pyrolysis characteristics of microalgae Chlorella vulgaris and coal through TGA. Chen C; Ma X; He Y Bioresour Technol; 2012 Aug; 117():264-73. PubMed ID: 22617036 [TBL] [Abstract][Full Text] [Related]
19. Pyrolysis and combustion kinetics of Sida cordifolia L. using thermogravimetric analysis. Boubacar Laougé Z; Merdun H Bioresour Technol; 2020 Mar; 299():122602. PubMed ID: 31869633 [TBL] [Abstract][Full Text] [Related]
20. Pyrolysis of mustard straw: Evaluation of optimum process parameters, kinetic and thermodynamic study. Nawaz A; Kumar P Bioresour Technol; 2021 Nov; 340():125722. PubMed ID: 34385127 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]