BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37783242)

  • 1. Identification of drug-side effect association via correntropy-loss based matrix factorization with neural tangent kernel.
    Ding Y; Zhou H; Zou Q; Yuan L
    Methods; 2023 Nov; 219():73-81. PubMed ID: 37783242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of drug-target interactions via multiple kernel-based triple collaborative matrix factorization.
    Ding Y; Tang J; Guo F; Zou Q
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35134117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of drug-target interactions via neural tangent kernel extraction feature matrix factorization model.
    Wang Y; Zhang Y; Wang J; Xie F; Zheng D; Zou X; Guo M; Ding Y; Wan J; Han K
    Comput Biol Med; 2023 Jun; 159():106955. PubMed ID: 37094465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Triple Matrix Factorization Method for Detecting Drug-Side Effect Association Based on Kernel Target Alignment.
    Guo X; Zhou W; Yu Y; Ding Y; Tang J; Guo F
    Biomed Res Int; 2020; 2020():4675395. PubMed ID: 32596314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sparse robust graph-regularized non-negative matrix factorization based on correntropy.
    Wang CY; Gao YL; Liu JX; Dai LY; Shang J
    J Bioinform Comput Biol; 2021 Feb; 19(1):2050047. PubMed ID: 33410727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Drug-Side Effect Association via Semisupervised Model and Multiple Kernel Learning.
    Ding Y; Tang J; Guo F
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2619-2632. PubMed ID: 30507518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correntropy induced loss based sparse robust graph regularized extreme learning machine for cancer classification.
    Ren LR; Gao YL; Liu JX; Shang J; Zheng CH
    BMC Bioinformatics; 2020 Oct; 21(1):445. PubMed ID: 33028187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of drug-side effect association via restricted Boltzmann machines with penalized term.
    Qian Y; Ding Y; Zou Q; Guo F
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36259601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multikernel Correntropy for Robust Learning.
    Chen B; Xie Y; Wang X; Yuan Z; Ren P; Qin J
    IEEE Trans Cybern; 2022 Dec; 52(12):13500-13511. PubMed ID: 34550898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved Prediction of Drug-Target Interactions Using Self-Paced Learning with Collaborative Matrix Factorization.
    Xia LY; Yang ZY; Zhang H; Liang Y
    J Chem Inf Model; 2019 Jul; 59(7):3340-3351. PubMed ID: 31260620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Matrix factorization with denoising autoencoders for prediction of drug-target interactions.
    Sajadi SZ; Zare Chahooki MA; Tavakol M; Gharaghani S
    Mol Divers; 2023 Jun; 27(3):1333-1343. PubMed ID: 35871213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A neighborhood-regularization method leveraging multiview data for predicting the frequency of drug-side effects.
    Wang L; Sun C; Xu X; Li J; Zhang W
    Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37647657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correntropy-Based Hypergraph Regularized NMF for Clustering and Feature Selection on Multi-Cancer Integrated Data.
    Yu N; Wu MJ; Liu JX; Zheng CH; Xu Y
    IEEE Trans Cybern; 2021 Aug; 51(8):3952-3963. PubMed ID: 32603306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting adverse drug effects: A heterogeneous graph convolution network with a multi-layer perceptron approach.
    Chen YH; Shih YT; Chien CS; Tsai CS
    PLoS One; 2022; 17(12):e0266435. PubMed ID: 36516131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laplacian Regularized Sparse Representation Based Classifier for Identifying DNA N4-Methylcytosine Sites via L
    Ding Y; He W; Tang J; Zou Q; Guo F
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):500-511. PubMed ID: 34882559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel graph attention model for predicting frequencies of drug-side effects from multi-view data.
    Zhao H; Zheng K; Li Y; Wang J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34213525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Similarity-based machine learning support vector machine predictor of drug-drug interactions with improved accuracies.
    Song D; Chen Y; Min Q; Sun Q; Ye K; Zhou C; Yuan S; Sun Z; Liao J
    J Clin Pharm Ther; 2019 Apr; 44(2):268-275. PubMed ID: 30565313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the side effects of drugs using matrix factorization on spontaneous reporting database.
    Fukuto K; Takagi T; Tian YS
    Sci Rep; 2021 Dec; 11(1):23942. PubMed ID: 34907245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inverse similarity and reliable negative samples for drug side-effect prediction.
    Zheng Y; Peng H; Ghosh S; Lan C; Li J
    BMC Bioinformatics; 2019 Feb; 19(Suppl 13):554. PubMed ID: 30717666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting the Addition of Information Regarding Clinically Significant Adverse Drug Reactions to Japanese Drug Package Inserts Using a Machine-Learning Model.
    Watanabe T; Ambe K; Tohkin M
    Ther Innov Regul Sci; 2024 Mar; 58(2):357-367. PubMed ID: 38135862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.