These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37783242)

  • 1. Identification of drug-side effect association via correntropy-loss based matrix factorization with neural tangent kernel.
    Ding Y; Zhou H; Zou Q; Yuan L
    Methods; 2023 Nov; 219():73-81. PubMed ID: 37783242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of drug-target interactions via multiple kernel-based triple collaborative matrix factorization.
    Ding Y; Tang J; Guo F; Zou Q
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35134117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of drug-target interactions via neural tangent kernel extraction feature matrix factorization model.
    Wang Y; Zhang Y; Wang J; Xie F; Zheng D; Zou X; Guo M; Ding Y; Wan J; Han K
    Comput Biol Med; 2023 Jun; 159():106955. PubMed ID: 37094465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Triple Matrix Factorization Method for Detecting Drug-Side Effect Association Based on Kernel Target Alignment.
    Guo X; Zhou W; Yu Y; Ding Y; Tang J; Guo F
    Biomed Res Int; 2020; 2020():4675395. PubMed ID: 32596314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sparse robust graph-regularized non-negative matrix factorization based on correntropy.
    Wang CY; Gao YL; Liu JX; Dai LY; Shang J
    J Bioinform Comput Biol; 2021 Feb; 19(1):2050047. PubMed ID: 33410727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Drug-Side Effect Association via Semisupervised Model and Multiple Kernel Learning.
    Ding Y; Tang J; Guo F
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2619-2632. PubMed ID: 30507518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correntropy induced loss based sparse robust graph regularized extreme learning machine for cancer classification.
    Ren LR; Gao YL; Liu JX; Shang J; Zheng CH
    BMC Bioinformatics; 2020 Oct; 21(1):445. PubMed ID: 33028187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of drug-side effect association via restricted Boltzmann machines with penalized term.
    Qian Y; Ding Y; Zou Q; Guo F
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36259601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multikernel Correntropy for Robust Learning.
    Chen B; Xie Y; Wang X; Yuan Z; Ren P; Qin J
    IEEE Trans Cybern; 2022 Dec; 52(12):13500-13511. PubMed ID: 34550898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved Prediction of Drug-Target Interactions Using Self-Paced Learning with Collaborative Matrix Factorization.
    Xia LY; Yang ZY; Zhang H; Liang Y
    J Chem Inf Model; 2019 Jul; 59(7):3340-3351. PubMed ID: 31260620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Matrix factorization with denoising autoencoders for prediction of drug-target interactions.
    Sajadi SZ; Zare Chahooki MA; Tavakol M; Gharaghani S
    Mol Divers; 2023 Jun; 27(3):1333-1343. PubMed ID: 35871213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A neighborhood-regularization method leveraging multiview data for predicting the frequency of drug-side effects.
    Wang L; Sun C; Xu X; Li J; Zhang W
    Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37647657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correntropy-Based Hypergraph Regularized NMF for Clustering and Feature Selection on Multi-Cancer Integrated Data.
    Yu N; Wu MJ; Liu JX; Zheng CH; Xu Y
    IEEE Trans Cybern; 2021 Aug; 51(8):3952-3963. PubMed ID: 32603306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laplacian Regularized Sparse Representation Based Classifier for Identifying DNA N4-Methylcytosine Sites via L
    Ding Y; He W; Tang J; Zou Q; Guo F
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):500-511. PubMed ID: 34882559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel graph attention model for predicting frequencies of drug-side effects from multi-view data.
    Zhao H; Zheng K; Li Y; Wang J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34213525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting adverse drug effects: A heterogeneous graph convolution network with a multi-layer perceptron approach.
    Chen YH; Shih YT; Chien CS; Tsai CS
    PLoS One; 2022; 17(12):e0266435. PubMed ID: 36516131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broad learning system based on maximum multi-kernel correntropy criterion.
    Zhao H; Lu X
    Neural Netw; 2024 Nov; 179():106521. PubMed ID: 39042948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Similarity-based machine learning support vector machine predictor of drug-drug interactions with improved accuracies.
    Song D; Chen Y; Min Q; Sun Q; Ye K; Zhou C; Yuan S; Sun Z; Liao J
    J Clin Pharm Ther; 2019 Apr; 44(2):268-275. PubMed ID: 30565313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting the side effects of drugs using matrix factorization on spontaneous reporting database.
    Fukuto K; Takagi T; Tian YS
    Sci Rep; 2021 Dec; 11(1):23942. PubMed ID: 34907245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inverse similarity and reliable negative samples for drug side-effect prediction.
    Zheng Y; Peng H; Ghosh S; Lan C; Li J
    BMC Bioinformatics; 2019 Feb; 19(Suppl 13):554. PubMed ID: 30717666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.