BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37783242)

  • 21. Graph Regularized Probabilistic Matrix Factorization for Drug-Drug Interactions Prediction.
    Jain S; Chouzenoux E; Kumar K; Majumdar A
    IEEE J Biomed Health Inform; 2023 May; 27(5):2565-2574. PubMed ID: 37027562
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploring associations of non-coding RNAs in human diseases via three-matrix factorization with hypergraph-regular terms on center kernel alignment.
    Wang H; Tang J; Ding Y; Guo F
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33443536
    [TBL] [Abstract][Full Text] [Related]  

  • 23. VB-MK-LMF: fusion of drugs, targets and interactions using variational Bayesian multiple kernel logistic matrix factorization.
    Bolgár B; Antal P
    BMC Bioinformatics; 2017 Oct; 18(1):440. PubMed ID: 28978313
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting drug side effects by multi-label learning and ensemble learning.
    Zhang W; Liu F; Luo L; Zhang J
    BMC Bioinformatics; 2015 Nov; 16():365. PubMed ID: 26537615
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NRBdMF: A Recommendation Algorithm for Predicting Drug Effects Considering Directionality.
    Azuma I; Mizuno T; Kusuhara H
    J Chem Inf Model; 2023 Jan; 63(2):474-483. PubMed ID: 36635231
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A neural network-based method for polypharmacy side effects prediction.
    Masumshah R; Aghdam R; Eslahchi C
    BMC Bioinformatics; 2021 Jul; 22(1):385. PubMed ID: 34303360
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel machine learning model based on sparse structure learning with adaptive graph regularization for predicting drug side effects.
    Liang X; Li J; Fu Y; Qu L; Tan Y; Zhang P
    J Biomed Inform; 2022 Aug; 132():104131. PubMed ID: 35840061
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A unified drug-target interaction prediction framework based on knowledge graph and recommendation system.
    Ye Q; Hsieh CY; Yang Z; Kang Y; Chen J; Cao D; He S; Hou T
    Nat Commun; 2021 Nov; 12(1):6775. PubMed ID: 34811351
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discovery of Potential Therapeutic Drugs for COVID-19 Through Logistic Matrix Factorization With Kernel Diffusion.
    Tian X; Shen L; Gao P; Huang L; Liu G; Zhou L; Peng L
    Front Microbiol; 2022; 13():740382. PubMed ID: 35295301
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MEDICASCY: A Machine Learning Approach for Predicting Small-Molecule Drug Side Effects, Indications, Efficacy, and Modes of Action.
    Zhou H; Cao H; Matyunina L; Shelby M; Cassels L; McDonald JF; Skolnick J
    Mol Pharm; 2020 May; 17(5):1558-1574. PubMed ID: 32237745
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A similarity-based method for prediction of drug side effects with heterogeneous information.
    Zhao X; Chen L; Lu J
    Math Biosci; 2018 Dec; 306():136-144. PubMed ID: 30296417
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Manifold regularized matrix factorization for drug-drug interaction prediction.
    Zhang W; Chen Y; Li D; Yue X
    J Biomed Inform; 2018 Dec; 88():90-97. PubMed ID: 30445219
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Matrix factorization with neural network for predicting circRNA-RBP interactions.
    Wang Z; Lei X
    BMC Bioinformatics; 2020 Jun; 21(1):229. PubMed ID: 32503474
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of drug adverse events using deep learning in pharmaceutical discovery.
    Lee CY; Chen YP
    Brief Bioinform; 2021 Mar; 22(2):1884-1901. PubMed ID: 32349125
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Comparison Study of Algorithms to Detect Drug-Adverse Event Associations: Frequentist, Bayesian, and Machine-Learning Approaches.
    Pham M; Cheng F; Ramachandran K
    Drug Saf; 2019 Jun; 42(6):743-750. PubMed ID: 30762164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of drug side effects with a path-based method.
    Jiang M; Zhou B; Chen L
    Math Biosci Eng; 2022 Apr; 19(6):5754-5771. PubMed ID: 35603377
    [TBL] [Abstract][Full Text] [Related]  

  • 37. LDCMFC: Predicting Long Non-Coding RNA and Disease Association Using Collaborative Matrix Factorization Based on Correntropy.
    Xi WY; Zhou F; Gao YL; Liu JX; Zheng CH
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):1774-1782. PubMed ID: 36251902
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DRaW: prediction of COVID-19 antivirals by deep learning-an objection on using matrix factorization.
    Hashemi SM; Zabihian A; Hooshmand M; Gharaghani S
    BMC Bioinformatics; 2023 Feb; 24(1):52. PubMed ID: 36793010
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Correntropy based semi-supervised concept factorization with adaptive neighbors for clustering.
    Peng S; Yang Z; Nie F; Chen B; Lin Z
    Neural Netw; 2022 Oct; 154():203-217. PubMed ID: 35907358
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kernel Correntropy Conjugate Gradient Algorithms Based on Half-Quadratic Optimization.
    Xiong K; Iu HHC; Wang S
    IEEE Trans Cybern; 2021 Nov; 51(11):5497-5510. PubMed ID: 31945006
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.