These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 37783464)
1. Enabling High-Performance All-Solid-State Batteries via Guest Wrench in Zeolite Strategy. Chi X; Li M; Chen X; Xu J; Yin X; Li S; Jin Z; Luo Z; Wang X; Kong D; Han M; Xu JJ; Liu Z; Mei D; Wang J; Henkelman G; Yu J J Am Chem Soc; 2023 Nov; 145(44):24116-24125. PubMed ID: 37783464 [TBL] [Abstract][Full Text] [Related]
2. A highly stable and flexible zeolite electrolyte solid-state Li-air battery. Chi X; Li M; Di J; Bai P; Song L; Wang X; Li F; Liang S; Xu J; Yu J Nature; 2021 Apr; 592(7855):551-557. PubMed ID: 33883734 [TBL] [Abstract][Full Text] [Related]
3. A Metal-Organic Framework Based Quasi-Solid-State Electrolyte Enabling Continuous Ion Transport for High-Safety and High-Energy-Density Lithium Metal Batteries. Wu Z; Yi Y; Hai F; Tian X; Zheng S; Guo J; Tang W; Hua W; Li M ACS Appl Mater Interfaces; 2023 May; 15(18):22065-22074. PubMed ID: 37122124 [TBL] [Abstract][Full Text] [Related]
5. Highly Stable Organic Molecular Porous Solid Electrolyte with One-Dimensional Ion Migration Channel for Solid-State Lithium-Oxygen Battery. Li JX; Guan DH; Wang XX; Miao CL; Li JY; Xu JJ Adv Mater; 2024 Jun; 36(23):e2312661. PubMed ID: 38290062 [TBL] [Abstract][Full Text] [Related]
6. Poly(vinylene carbonate)-Based Composite Polymer Electrolyte with Enhanced Interfacial Stability To Realize High-Performance Room-Temperature Solid-State Sodium Batteries. Chen S; Che H; Feng F; Liao J; Wang H; Yin Y; Ma ZF ACS Appl Mater Interfaces; 2019 Nov; 11(46):43056-43065. PubMed ID: 31660726 [TBL] [Abstract][Full Text] [Related]
7. Build a High-Performance All-Solid-State Lithium Battery through Introducing Competitive Coordination Induction Effect in Polymer-Based Electrolyte. Wang T; Chen B; Liu C; Li T; Liu X Angew Chem Int Ed Engl; 2024 Apr; 63(16):e202400960. PubMed ID: 38385630 [TBL] [Abstract][Full Text] [Related]
8. Metal-Organic Framework Confined Solvent Ionic Liquid Enables Long Cycling Life Quasi-Solid-State Lithium Battery in Wide Temperature Range. Liu Z; Hu Z; Jiang X; Wang X; Li Z; Chen Z; Zhang Y; Zhang S Small; 2022 Sep; 18(37):e2203011. PubMed ID: 35971029 [TBL] [Abstract][Full Text] [Related]
9. Nanostructured Metal-Organic Framework (MOF)-Derived Solid Electrolytes Realizing Fast Lithium Ion Transportation Kinetics in Solid-State Batteries. Wu JF; Guo X Small; 2019 Feb; 15(5):e1804413. PubMed ID: 30624013 [TBL] [Abstract][Full Text] [Related]
10. Integrated Interface Strategy toward Room Temperature Solid-State Lithium Batteries. Ju J; Wang Y; Chen B; Ma J; Dong S; Chai J; Qu H; Cui L; Wu X; Cui G ACS Appl Mater Interfaces; 2018 Apr; 10(16):13588-13597. PubMed ID: 29620848 [TBL] [Abstract][Full Text] [Related]
11. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Yu X; Manthiram A Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389 [TBL] [Abstract][Full Text] [Related]
12. Facile In Situ Chemical Cross-Linking Gel Polymer Electrolyte, which Confines the Shuttle Effect with High Ionic Conductivity and Li-Ion Transference Number for Quasi-Solid-State Lithium-Sulfur Battery. Zhang T; Zhang J; Yang S; Li Y; Dong R; Yuan J; Liu Y; Wu Z; Song Y; Zhong Y; Xiang W; Chen Y; Zhong B; Guo X ACS Appl Mater Interfaces; 2021 Sep; 13(37):44497-44508. PubMed ID: 34506122 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the structure and chemistry of the solid-electrolyte interface by cryo-EM leads to high-performance solid-state Li-metal batteries. Lin R; He Y; Wang C; Zou P; Hu E; Yang XQ; Xu K; Xin HL Nat Nanotechnol; 2022 Jul; 17(7):768-776. PubMed ID: 35773425 [TBL] [Abstract][Full Text] [Related]
14. In situ electrochemical modification of the Li/Li Xu Y; Tian M; Rong Y; Lu C; Lu Z; Shi R; Gu T; Zhang Q; Jin C; Yang R J Colloid Interface Sci; 2023 Jul; 641():396-403. PubMed ID: 36948096 [TBL] [Abstract][Full Text] [Related]
15. Interface-Engineered Li Zhang Z; Zhang L; Liu Y; Wang H; Yu C; Zeng H; Wang LM; Xu B ChemSusChem; 2018 Nov; 11(21):3774-3782. PubMed ID: 30193013 [TBL] [Abstract][Full Text] [Related]
16. Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries. Wu JF; Pang WK; Peterson VK; Wei L; Guo X ACS Appl Mater Interfaces; 2017 Apr; 9(14):12461-12468. PubMed ID: 28332828 [TBL] [Abstract][Full Text] [Related]
17. Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid. Yang C; Fu K; Zhang Y; Hitz E; Hu L Adv Mater; 2017 Sep; 29(36):. PubMed ID: 28741318 [TBL] [Abstract][Full Text] [Related]
18. Lithium Salt Catalyzed Ring-Opening Polymerized Solid-State Electrolyte with Comparable Ionic Conductivity and Better Interface Compatibility for Li-Ion Batteries. Zhang W; Yoon S; Jin L; Lim H; Jeon M; Jang H; Ahmed F; Kim W Membranes (Basel); 2022 Mar; 12(3):. PubMed ID: 35323805 [TBL] [Abstract][Full Text] [Related]
20. In Situ Formed LiI Interfacial Layer for All-Solid-State Lithium Batteries with Li Li J; Li Y; Zhang S; Liu T; Li D; Ci L ACS Appl Mater Interfaces; 2022 Dec; 14(50):55727-55734. PubMed ID: 36473048 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]