These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 3778447)

  • 1. 31P-NMR spectroscopy demonstrates decreased ATP levels in vivo as an early response to photodynamic therapy.
    Ceckler TL; Bryant RG; Penney DP; Gibson SL; Hilf R
    Biochem Biophys Res Commun; 1986 Oct; 140(1):273-9. PubMed ID: 3778447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of laser photodynamic therapy on tumor phosphate levels and pH assessed by 31P-NMR spectroscopy.
    Gibson SL; Ceckler TL; Bryant TG; Hilf R
    Cancer Biochem Biophys; 1989 Oct; 10(4):319-28. PubMed ID: 2533522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo 31P-NMR spectroscopy of mammary carcinoma subjected to subcurative photodynamic therapy.
    Chopp M; Farmer H; Hetzel F; Schaap AP
    Photochem Photobiol; 1987 Nov; 46(5):819-22. PubMed ID: 3441504
    [No Abstract]   [Full Text] [Related]  

  • 4. Hetergeneous tumour response to photodynamic therapy assessed by in vivo localised 31P NMR spectroscopy.
    Ceckler TL; Gibson SL; Kennedy SD; Hill R; Bryant RG
    Br J Cancer; 1991 Jun; 63(6):916-22. PubMed ID: 1829953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship of mitochondrial function and cellular adenosine triphosphate levels to hematoporphyrin derivative-induced photosensitization in R3230AC mammary tumors.
    Hilf R; Murant RS; Narayanan U; Gibson SL
    Cancer Res; 1986 Jan; 46(1):211-7. PubMed ID: 3940191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early biochemical responses to photodynamic therapy monitored by NMR spectroscopy.
    Hilf R; Gibson SL; Penney DP; Ceckler TL; Bryant RG
    Photochem Photobiol; 1987 Nov; 46(5):809-17. PubMed ID: 2831551
    [No Abstract]   [Full Text] [Related]  

  • 7. Dietary fat modulation of murine mammary tumor metabolism studied by in vivo 31P-nuclear magnetic resonance spectroscopy.
    Buckman DK; Erickson KL; Ross BD
    Cancer Res; 1987 Nov; 47(21):5631-6. PubMed ID: 3664470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear magnetic resonance spectroscopy and sensitizer-adduct measurements of photodynamic therapy-induced ischemia in solid tumors.
    Chapman JD; McPhee MS; Walz N; Chetner MP; Stobbe CC; Soderlind K; Arnfield M; Meeker BE; Trimble L; Allen PS
    J Natl Cancer Inst; 1991 Nov; 83(22):1650-9. PubMed ID: 1749018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 31P-nuclear magnetic resonance spectroscopy studies of the response of rat mammary tumors to endocrine therapy.
    Rodrigues LM; Midwood CJ; Coombes RC; Stevens AN; Stubbs M; Griffiths JR
    Cancer Res; 1988 Jan; 48(1):89-93. PubMed ID: 3335001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dose-dependent metabolic response of mammary carcinoma to photodynamic therapy.
    Chopp M; Hetzel FW; Jiang Q
    Radiat Res; 1990 Mar; 121(3):288-94. PubMed ID: 2315447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 31P NMR spectroscopy can predict the optimum interval between fractionated irradiation doses.
    Murata O; Sakurai H; Mitsuhashi N; Hasegawa M; Yamakawa M; Kurosaki H; Hayakawa K; Niibe H
    Anticancer Res; 1998; 18(6A):4297-301. PubMed ID: 9891481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased efficacy of photodynamic therapy of R3230AC mammary adenocarcinoma by intratumoral injection of Photofrin II.
    Gibson SL; van der Meid KR; Murant RS; Hilf R
    Br J Cancer; 1990 Apr; 61(4):553-7. PubMed ID: 2139578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo magnetic resonance imaging of the effects of photodynamic therapy.
    Dodd NJ; Moore JV; Poppitt DG; Wood B
    Br J Cancer; 1989 Aug; 60(2):164-7. PubMed ID: 2765361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the effects of photodynamic therapy with phosphorus 31 magnetic resonance spectroscopy.
    Nishiwaki M; Fujise Y; Yoshida TO; Matsuzawa E; Nishiwaki Y
    Br J Cancer; 1999 Apr; 80(1-2):133-41. PubMed ID: 10389989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR-visible ATP and Pi in normoxic and reperfused rat hearts: a quantitative study.
    Humphrey SM; Garlick PB
    Am J Physiol; 1991 Jan; 260(1 Pt 2):H6-12. PubMed ID: 1992810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct relationship between high-energy phosphate content and blood flow in thermally treated murine tumors.
    Lilly MB; Katholi CR; Ng TC
    J Natl Cancer Inst; 1985 Nov; 75(5):885-9. PubMed ID: 3863988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of oxygen vs. glucose in energy metabolism in a mammary carcinoma perfused ex vivo: direct measurement by 31P NMR.
    Eskey CJ; Koretsky AP; Domach MM; Jain RK
    Proc Natl Acad Sci U S A; 1993 Apr; 90(7):2646-50. PubMed ID: 8464871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of various photoradiation regimens on the antitumor efficacy of photodynamic therapy for R3230AC mammary carcinomas.
    Gibson SL; VanDerMeid KR; Murant RS; Raubertas RF; Hilf R
    Cancer Res; 1990 Nov; 50(22):7236-41. PubMed ID: 2171760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of tumor destruction following photodynamic therapy with hematoporphyrin derivative, chlorin, and phthalocyanine.
    Nelson JS; Liaw LH; Orenstein A; Roberts WG; Berns MW
    J Natl Cancer Inst; 1988 Dec; 80(20):1599-605. PubMed ID: 2973528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the effects of photoradiation therapy on brain tumors with in vivo P-31 MR spectroscopy.
    Naruse S; Horikawa Y; Tanaka C; Higuchi T; Sekimoto H; Ueda S; Hirakawa K
    Radiology; 1986 Sep; 160(3):827-30. PubMed ID: 3737923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.