These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 3778470)

  • 41. [Oxidation of fatty-aromatic aldehydes in liver tissues].
    Kholmina GV; Gorkin VZ
    Vopr Med Khim; 1979; 25(3):322-8. PubMed ID: 36712
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Remarkable positional (regio)specificity of xanthine oxidase and some dehydrogenases in the reactions with substituted benzaldehydes.
    Pelsy G; Klibanov AM
    Biochim Biophys Acta; 1983 Jan; 742(2):352-7. PubMed ID: 6337634
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In vitro and in vivo study on the conversion of allopurinol and pyrazinamide.
    Nasako Y; Yamamoto T; Moriwaki Y; Takahashi S; Tsutsumi Z; Hada T; Higashino K
    Adv Exp Med Biol; 1994; 370():43-6. PubMed ID: 7660944
    [No Abstract]   [Full Text] [Related]  

  • 44. [A new electron transfer system functioned as drug reducing enzyme system].
    Kitamura S
    Yakugaku Zasshi; 1988 Apr; 108(4):296-309. PubMed ID: 3145973
    [No Abstract]   [Full Text] [Related]  

  • 45. Tropylium ion mediated α-cyanation of amines.
    Allen JM; Lambert TH
    J Am Chem Soc; 2011 Feb; 133(5):1260-2. PubMed ID: 21204541
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Aldehyde dehydrogenases, aldehyde oxidase and xanthine oxidase from baboon tissues: phenotypic variability and subcellular distribution in liver and brain.
    Holmes RS; Vandeberg JL
    Alcohol; 1986; 3(3):205-14. PubMed ID: 3755605
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Zonal distribution of allopurinol-oxidizing enzymes in rat liver.
    Moriwaki Y; Yamamoto T; Yamakita J; Takahashi S; Tsutsumi Z; Higashino K
    Adv Exp Med Biol; 1998; 431():47-50. PubMed ID: 9598029
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Involvement of liver aldehyde oxidase in conversion of N-hydroxyurethane to urethane.
    Sugihara K; Kitamura S; Tatsumi K
    J Pharmacobiodyn; 1983 Sep; 6(9):677-83. PubMed ID: 6689178
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Involvement of liver aldehyde oxidase in the reduction of nicotinamide N-oxide.
    Kitamura S; Tatsumi K
    Biochem Biophys Res Commun; 1984 Apr; 120(2):602-6. PubMed ID: 6233971
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Primary deuterium isotope effect in the oxidation of an iminium ion by aldehyde oxidase.
    Ruenitz PC; Thomas HG
    Arch Biochem Biophys; 1985 May; 239(1):270-2. PubMed ID: 4004259
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kinetics of some benzothiazoles, benzoxazoles, and quinolines as substrates and inhibitors of rabbit liver aldehyde oxidase.
    Gristwood W; Wilson K
    Xenobiotica; 1988 Aug; 18(8):949-54. PubMed ID: 3188574
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metabolism of isovanillin by aldehyde oxidase, xanthine oxidase, aldehyde dehydrogenase and liver slices.
    Panoutsopoulos GI; Beedham C
    Pharmacology; 2005 Mar; 73(4):199-208. PubMed ID: 15627845
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Elevation of molybdenum hydroxylase levels in rabbit liver after ingestion of phthalazine or its hydroxylated metabolite.
    Johnson C; Stubley-Beedham C; Stell JG
    Biochem Pharmacol; 1984 Nov; 33(22):3699-705. PubMed ID: 6548914
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An extremely potent anilinoacridine inhibitor of aldehyde oxidase.
    Gormley PE; Rossitch E; D'Anna ME; Cysyk R
    Biochem Biophys Res Commun; 1983 Oct; 116(2):759-64. PubMed ID: 6689124
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Involvement of molybdenum hydroxylases in reductive metabolism of nitro polycyclic aromatic hydrocarbons in mammalian skin.
    Ueda O; Sugihara K; Ohta S; Kitamura S
    Drug Metab Dispos; 2005 Sep; 33(9):1312-8. PubMed ID: 15932950
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Retinal oxidase is identical to aldehyde oxidase.
    Tomita S; Tsujita M; Ichikawa Y
    FEBS Lett; 1993 Dec; 336(2):272-4. PubMed ID: 8262244
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Human xanthine oxidase changes its substrate specificity to aldehyde oxidase type upon mutation of amino acid residues in the active site: roles of active site residues in binding and activation of purine substrate.
    Yamaguchi Y; Matsumura T; Ichida K; Okamoto K; Nishino T
    J Biochem; 2007 Apr; 141(4):513-24. PubMed ID: 17301077
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Kinetic and thermodynamic aspects of tubulin-ligand interactions: binding of the colchicine analog 2-methoxy-5-(2',3',4'-trimethoxyphenyl) tropone.
    Engelborghs Y; Fitzgerald TJ
    Ann N Y Acad Sci; 1986; 466():709-17. PubMed ID: 3460445
    [No Abstract]   [Full Text] [Related]  

  • 59. Immunohistochemical localization of aldehyde and xanthine oxidase in rat tissues using polyclonal antibodies.
    Moriwaki Y; Yamamoto T; Yamaguchi K; Takahashi S; Higashino K
    Histochem Cell Biol; 1996 Jan; 105(1):71-9. PubMed ID: 8824908
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A structure-based catalytic mechanism for the xanthine oxidase family of molybdenum enzymes.
    Huber R; Hof P; Duarte RO; Moura JJ; Moura I; Liu MY; LeGall J; Hille R; Archer M; Romão MJ
    Proc Natl Acad Sci U S A; 1996 Aug; 93(17):8846-51. PubMed ID: 8799115
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.