These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
81 related articles for article (PubMed ID: 3778530)
1. Equilibrium cation binding selectivity of the carboxylic ionophore narasin A: a comparison with transport selectivities reported in two biological test systems. Caughey B; Painter GR; Gibbons WA Biochem Pharmacol; 1986 Nov; 35(22):4103-5. PubMed ID: 3778530 [No Abstract] [Full Text] [Related]
2. The role of molecular conformation in ion capture by carboxylic ionophores: a circular dichroism study of narasin A in single-phase solvents and liposomes. Caughey B; Painter GR; Drake AF; Gibbons WA Biochim Biophys Acta; 1986 Jan; 854(1):109-16. PubMed ID: 3002459 [TBL] [Abstract][Full Text] [Related]
3. [In vitro study of various ionophore antibiotics and some of their derivatives. II. Characterization of the ionophore properties of the compounds in a model system for Na+ and K+ ions]. Caffarel-Mendez S; Demuynck C; Jeminet G Reprod Nutr Dev (1980); 1987; 27(5):921-8. PubMed ID: 3685617 [TBL] [Abstract][Full Text] [Related]
4. The transport of Na+ and K+ ions through phospholipid bilayers mediated by the antibiotics salinomycin and narasin studied by 23Na- and 39K-NMR spectroscopy. Riddell FG; Tompsett SJ Biochim Biophys Acta; 1990 May; 1024(1):193-7. PubMed ID: 2337616 [TBL] [Abstract][Full Text] [Related]
5. [Homeostasis of sodium and potassium ions in lamprey Lampetra fluviatilis: influence ion transport and metabolic blockers and ionophores. ]. Gusev GP; Ivanova TI Zh Evol Biokhim Fiziol; 2004; 40(3):204-9. PubMed ID: 15453449 [No Abstract] [Full Text] [Related]
6. Comparative studies on intracellular potassium- and sodium concentrations of wild-type and a macrotetrolide negative mutant of Streptomyces griseus. Kanne R; Zähner H Z Naturforsch C Biosci; 1976; 31(3-4):115-7. PubMed ID: 134550 [No Abstract] [Full Text] [Related]
7. Drug Transporter-Mediated Protection of Cancer Stem Cells From Ionophore Antibiotics. Boesch M; Zeimet AG; Rumpold H; Gastl G; Sopper S; Wolf D Stem Cells Transl Med; 2015 Sep; 4(9):1028-32. PubMed ID: 26136502 [TBL] [Abstract][Full Text] [Related]
8. Modification of cation selectivity of valinomycin by complexing it with an anion: delta pH decay studies. Prabhananda BS; Kombrabail MH Biochem Mol Biol Int; 1996 Feb; 38(2):417-24. PubMed ID: 8850538 [TBL] [Abstract][Full Text] [Related]
9. Biosynthetic origins of the ionophore antibiotic indanomycin. Roege KE; Kelly WL Org Lett; 2009 Jan; 11(2):297-300. PubMed ID: 19072095 [TBL] [Abstract][Full Text] [Related]
10. The solvent polarity dependent conformational equilibrium of the carboxylic ionophore narasin: a proton NMR study. Caughey B; Painter G; Pressman BC; Gibbons WA Biochem Biophys Res Commun; 1983 Jun; 113(3):832-8. PubMed ID: 6307303 [TBL] [Abstract][Full Text] [Related]
11. Isolation of ionophores from ion transport systems and their role in energy transduction. Shamoo AE; Goldstein DA Biochim Biophys Acta; 1977 May; 472(1):13-53. PubMed ID: 141944 [No Abstract] [Full Text] [Related]
12. A possible explanation of the cation selectivity in the active transport of erythrocytes. Györgyi S; Sugár I Acta Biol Med Ger; 1977; 36(5-6):909-12. PubMed ID: 146390 [No Abstract] [Full Text] [Related]
13. Isolation of an electrogenic K+/Ca2+ ionophore from an ionophoroprotein of beef heart mitochondria. Blondin GA; Kessler RJ; Green DE Proc Natl Acad Sci U S A; 1977 Sep; 74(9):3667-71. PubMed ID: 269422 [TBL] [Abstract][Full Text] [Related]
14. The existence of (sodium, potassium and calcium) ionophores in different membranes and their possible clinical importance. Ciliv G Turk J Pediatr; 1976; 18(1-2):9-24. PubMed ID: 802451 [No Abstract] [Full Text] [Related]
15. Evidence for anionic cation transport of lithium, sodium and potassium across the human erythrocyte membrane induced by divalent anions. Becker BF; Duhm J J Physiol; 1978 Sep; 282():149-68. PubMed ID: 31458 [TBL] [Abstract][Full Text] [Related]
16. Effect of intracellular calcium on the cation transport processes in human red cells. Gárdos G; Szász I; Sarkadi B Acta Biol Med Ger; 1977; 36(5-6):823-9. PubMed ID: 602587 [No Abstract] [Full Text] [Related]
17. Electrogenic and nonelectrogenic ion fluxes across lipid and mitochondrial membranes mediated by monensin and monensin ethyl ester. Antonenko YN; Rokitskaya TI; Huczyński A Biochim Biophys Acta; 2015 Apr; 1848(4):995-1004. PubMed ID: 25600660 [TBL] [Abstract][Full Text] [Related]
18. Isolation and characterization of a potassium specific ionophore from Streptococcus faecalis. Kanne R Z Naturforsch C Biosci; 1977; 32(11-12):926-8. PubMed ID: 146354 [TBL] [Abstract][Full Text] [Related]
19. Temperature dependence of cation permeability of dog red cells. Elford BC; Solomon AK Nature; 1974 Apr; 248(448):522-4. PubMed ID: 4824349 [No Abstract] [Full Text] [Related]
20. Ionophore properties of monensin derivatives studied on human erythrocytes by 23Na NMR and K+ and H+ potentiometry: relationship with antimicrobial and antimalarial activities. Rochdi M; Delort AM; Guyot J; Sancelme M; Gibot S; Gourcy JG; Dauphin G; Gumila C; Vial H; Jeminet G J Med Chem; 1996 Jan; 39(2):588-95. PubMed ID: 8558531 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]