These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 37786307)
41. Composite Bioscaffolds Incorporating Decellularized ECM as a Cell-Instructive Component Within Hydrogels as In Vitro Models and Cell Delivery Systems. Shridhar A; Gillies E; Amsden BG; Flynn LE Methods Mol Biol; 2018; 1577():183-208. PubMed ID: 28493212 [TBL] [Abstract][Full Text] [Related]
42. Award winner for outstanding research in the PhD category, 2014 Society for Biomaterials annual meeting and exposition, Denver, Colorado, April 16-19, 2014: Decellularized adipose matrix hydrogels stimulate in vivo neovascularization and adipose formation. Adam Young D; Bajaj V; Christman KL J Biomed Mater Res A; 2014 Jun; 102(6):1641-51. PubMed ID: 24510423 [TBL] [Abstract][Full Text] [Related]
43. Manufacturing of a Human Adipose-Derived Hydrogel. Robinson J; Lassiter H; Hamel K; Wu X; Gimble JM; Frazier T; Sanchez C Methods Mol Biol; 2024; 2783():159-165. PubMed ID: 38478231 [TBL] [Abstract][Full Text] [Related]
44. Fast Automated Approach for the Derivation of Acellular Extracellular Matrix Scaffolds from Porcine Soft Tissues. Badileanu A; Mora-Navarro C; Gracioso Martins AM; Garcia ME; Sze D; Ozpinar EW; Gaffney L; Enders JR; Branski RC; Freytes DO ACS Biomater Sci Eng; 2020 Jul; 6(7):4200-4213. PubMed ID: 33463339 [TBL] [Abstract][Full Text] [Related]
46. Fast, robust and effective decellularization of whole human livers using mild detergents and pressure controlled perfusion. Willemse J; Verstegen MMA; Vermeulen A; Schurink IJ; Roest HP; van der Laan LJW; de Jonge J Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110200. PubMed ID: 31923991 [TBL] [Abstract][Full Text] [Related]
47. Regional-specific meniscal extracellular matrix hydrogels and their effects on cell-matrix interactions of fibrochondrocytes. Wu J; Xu J; Huang Y; Tang L; Hong Y Biomed Mater; 2021 Dec; 17(1):. PubMed ID: 34883474 [TBL] [Abstract][Full Text] [Related]
48. Distinct phenotypes of cancer cells on tissue matrix gel. Ruud KF; Hiscox WC; Yu I; Chen RK; Li W Breast Cancer Res; 2020 Jul; 22(1):82. PubMed ID: 32736579 [TBL] [Abstract][Full Text] [Related]
49. Perfusion decellularization of human and porcine lungs: bringing the matrix to clinical scale. Gilpin SE; Guyette JP; Gonzalez G; Ren X; Asara JM; Mathisen DJ; Vacanti JP; Ott HC J Heart Lung Transplant; 2014 Mar; 33(3):298-308. PubMed ID: 24365767 [TBL] [Abstract][Full Text] [Related]
50. Extracellular matrix hydrogel therapies: In vivo applications and development. Spang MT; Christman KL Acta Biomater; 2018 Mar; 68():1-14. PubMed ID: 29274480 [TBL] [Abstract][Full Text] [Related]
51. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Naahidi S; Jafari M; Logan M; Wang Y; Yuan Y; Bae H; Dixon B; Chen P Biotechnol Adv; 2017 Sep; 35(5):530-544. PubMed ID: 28558979 [TBL] [Abstract][Full Text] [Related]
52. Production and evaluation of decellularized extracellular matrix hydrogel for cartilage regeneration derived from knee cartilage. Bordbar S; Lotfi Bakhshaiesh N; Khanmohammadi M; Sayahpour FA; Alini M; Baghaban Eslaminejad M J Biomed Mater Res A; 2020 Apr; 108(4):938-946. PubMed ID: 31894891 [TBL] [Abstract][Full Text] [Related]
53. Human bone tissue-derived ECM hydrogels: Controlling physicochemical, biochemical, and biological properties through processing parameters. Kim YH; Cidonio G; Kanczler JM; Oreffo RO; Dawson JI Bioact Mater; 2025 Jan; 43():114-128. PubMed ID: 39376928 [TBL] [Abstract][Full Text] [Related]
54. An in vitro model of fibrosis using crosslinked native extracellular matrix-derived hydrogels to modulate biomechanics without changing composition. Nizamoglu M; de Hilster RHJ; Zhao F; Sharma PK; Borghuis T; Harmsen MC; Burgess JK Acta Biomater; 2022 Jul; 147():50-62. PubMed ID: 35605955 [TBL] [Abstract][Full Text] [Related]
55. Decellularized tissue exhibits large differences of extracellular matrix properties dependent on decellularization method: novel insights from a standardized characterization on skeletal muscle. Terrie L; Philips C; Muylle E; Weisrock A; Lecomte-Grosbras P; Thorrez L Biofabrication; 2024 Mar; 16(2):. PubMed ID: 38394679 [TBL] [Abstract][Full Text] [Related]
56. Human placenta hydrogel reduces scarring in a rat model of cardiac ischemia and enhances cardiomyocyte and stem cell cultures. Francis MP; Breathwaite E; Bulysheva AA; Varghese F; Rodriguez RU; Dutta S; Semenov I; Ogle R; Huber A; Tichy AM; Chen S; Zemlin C Acta Biomater; 2017 Apr; 52():92-104. PubMed ID: 27965171 [TBL] [Abstract][Full Text] [Related]
57. Hydrogels derived from decellularized liver tissue support the growth and differentiation of cholangiocyte organoids. Willemse J; van Tienderen G; van Hengel E; Schurink I; van der Ven D; Kan Y; de Ruiter P; Rosmark O; Westergren-Thorsson G G; Schneeberger K; van der Eerden B; Roest H; Spee B; van der Laan L; de Jonge J; Verstegen M Biomaterials; 2022 May; 284():121473. PubMed ID: 35344800 [TBL] [Abstract][Full Text] [Related]
58. Perivascular extracellular matrix hydrogels mimic native matrix microarchitecture and promote angiogenesis via basic fibroblast growth factor. Fercana GR; Yerneni S; Billaud M; Hill JC; VanRyzin P; Richards TD; Sicari BM; Johnson SA; Badylak SF; Campbell PG; Gleason TG; Phillippi JA Biomaterials; 2017 Apr; 123():142-154. PubMed ID: 28167392 [TBL] [Abstract][Full Text] [Related]
59. A self-assembled dynamic extracellular matrix-like hydrogel system with multi-scale structures for cell bioengineering applications. Xu Y; Rothe R; Voigt D; Sayed A; Huang C; Hauser S; Lee PW; Cui M; Sáenz JP; Boccaccini AR; Zheng K; Pietzsch J; Zhang Y Acta Biomater; 2023 May; 162():211-225. PubMed ID: 36931420 [TBL] [Abstract][Full Text] [Related]