These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 37786372)
1. Which method delivers greater signal-to-noise ratio: Structural equation modelling or regression analysis with weighted composites? Yuan KH; Fang Y Br J Math Stat Psychol; 2023 Nov; 76(3):646-678. PubMed ID: 37786372 [TBL] [Abstract][Full Text] [Related]
2. Premature conclusions about the signal-to-noise ratio in structural equation modeling research: A commentary on Yuan and Fang (2023). Schuberth F; Schamberger T; Rönkkö M; Liu Y; Henseler J Br J Math Stat Psychol; 2023 Nov; 76(3):682-694. PubMed ID: 37070527 [TBL] [Abstract][Full Text] [Related]
3. Signal-to-Noise Ratio in Estimating and Testing the Mediation Effect: Structural Equation Modeling versus Path Analysis with Weighted Composites. Yuan KH; Zhang Z; Wang L Psychometrika; 2024 Sep; 89(3):974-1006. PubMed ID: 38806853 [TBL] [Abstract][Full Text] [Related]
4. Which method is more powerful in testing the relationship of theoretical constructs? A meta comparison of structural equation modeling and path analysis with weighted composites. Deng L; Yuan KH Behav Res Methods; 2023 Apr; 55(3):1460-1479. PubMed ID: 35653013 [TBL] [Abstract][Full Text] [Related]
5. More powerful parameter tests? No, rather biased parameter estimates. Some reflections on path analysis with weighted composites. Schuberth F; Schamberger T; Henseler J Behav Res Methods; 2024 Apr; 56(4):4205-4215. PubMed ID: 37936011 [TBL] [Abstract][Full Text] [Related]
6. Replies to comments on "Which method delivers greater signal-to-noise ratio: Structural equation modelling or regression analysis with weighted composites?" by Yuan and Fang (2023). Yuan KH; Fang Y Br J Math Stat Psychol; 2023 Nov; 76(3):695-704. PubMed ID: 37712565 [No Abstract] [Full Text] [Related]
7. Understanding Composite-Based Structural Equation Modeling Methods From the Perspective of Regression Component Analysis. Rigdon EE Multivariate Behav Res; 2024; 59(4):677-692. PubMed ID: 38591183 [TBL] [Abstract][Full Text] [Related]
8. Causality and prediction in structural equation modeling: A commentary by Yutaka Kano on: "Which method delivers greater signal-to-noise ratio: Structural equation modeling or regression analysis with weighted composites?" by Yuan and Fang. Kano Y Br J Math Stat Psychol; 2023 Nov; 76(3):679-681. PubMed ID: 37170618 [No Abstract] [Full Text] [Related]
9. A comparative evaluation of factor- and component-based structural equation modelling approaches under (in)correct construct representations. Cho G; Sarstedt M; Hwang H Br J Math Stat Psychol; 2022 May; 75(2):220-251. PubMed ID: 34661902 [TBL] [Abstract][Full Text] [Related]
10. Distributionally weighted least squares in structural equation modeling. Du H; Bentler PM Psychol Methods; 2022 Aug; 27(4):519-540. PubMed ID: 34166048 [TBL] [Abstract][Full Text] [Related]
11. An introduction to the partial least squares approach to structural equation modelling: a method for exploratory psychiatric research. Riou J; Guyon H; Falissard B Int J Methods Psychiatr Res; 2016 Sep; 25(3):220-31. PubMed ID: 26482420 [TBL] [Abstract][Full Text] [Related]
12. Global Least Squares Path Modeling: A Full-Information Alternative to Partial Least Squares Path Modeling. Hwang H; Cho G Psychometrika; 2020 Dec; 85(4):947-972. PubMed ID: 33346884 [TBL] [Abstract][Full Text] [Related]
13. An in-depth discussion and illustration of partial least squares structural equation modeling in health care. Avkiran NK Health Care Manag Sci; 2018 Sep; 21(3):401-408. PubMed ID: 28181112 [TBL] [Abstract][Full Text] [Related]
14. How to deal with the high condition number of the noise covariance matrix of gravity field functionals synthesised from a satellite-only global gravity field model? Klees R; Slobbe DC; Farahani HH J Geod; 2019; 93(1):29-44. PubMed ID: 30872904 [TBL] [Abstract][Full Text] [Related]
15. Penalized Least Squares for Structural Equation Modeling with Ordinal Responses. Huang PH Multivariate Behav Res; 2022; 57(2-3):279-297. PubMed ID: 32990059 [TBL] [Abstract][Full Text] [Related]
16. Statistical estimation of structural equation models with a mixture of continuous and categorical observed variables. Li CH Behav Res Methods; 2021 Oct; 53(5):2191-2213. PubMed ID: 33791955 [TBL] [Abstract][Full Text] [Related]
17. A penalized likelihood method for multi-group structural equation modelling. Huang PH Br J Math Stat Psychol; 2018 Nov; 71(3):499-522. PubMed ID: 29500879 [TBL] [Abstract][Full Text] [Related]
18. Selective Weighted Least Squares Method for Fourier Transform Infrared Quantitative Analysis. Wang X; Li Y; Wei H; Chen X Appl Spectrosc; 2017 Jun; 71(6):1231-1241. PubMed ID: 27798384 [TBL] [Abstract][Full Text] [Related]
19. More efficient parameter estimates for factor analysis of ordinal variables by ridge generalized least squares. Yuan KH; Jiang G; Cheng Y Br J Math Stat Psychol; 2017 Nov; 70(3):525-564. PubMed ID: 28547838 [TBL] [Abstract][Full Text] [Related]