These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37786533)

  • 21. Modeling conformational flexibility of kinases in inactive states.
    Schwarz D; Merget B; Deane C; Fulle S
    Proteins; 2019 Nov; 87(11):943-951. PubMed ID: 31168936
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Defining a new nomenclature for the structures of active and inactive kinases.
    Modi V; Dunbrack RL
    Proc Natl Acad Sci U S A; 2019 Apr; 116(14):6818-6827. PubMed ID: 30867294
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mapping the conformational energy landscape of Abl kinase using ClyA nanopore tweezers.
    Li F; Fahie MA; Gilliam KM; Pham R; Chen M
    Nat Commun; 2022 Jun; 13(1):3541. PubMed ID: 35725977
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of AlphaFold2 structures as docking targets.
    Holcomb M; Chang YT; Goodsell DS; Forli S
    Protein Sci; 2023 Jan; 32(1):e4530. PubMed ID: 36479776
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Family-wide analysis of integrin structures predicted by AlphaFold2.
    Zhang H; Zhu DS; Zhu J
    Comput Struct Biotechnol J; 2023; 21():4497-4507. PubMed ID: 37753178
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D-equivariant graph neural networks for protein model quality assessment.
    Chen C; Chen X; Morehead A; Wu T; Cheng J
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36637199
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improvement of protein tertiary and quaternary structure predictions using the ReFOLD refinement method and the AlphaFold2 recycling process.
    Adiyaman R; Edmunds NS; Genc AG; Alharbi SMA; McGuffin LJ
    Bioinform Adv; 2023; 3(1):vbad078. PubMed ID: 37359722
    [TBL] [Abstract][Full Text] [Related]  

  • 28. How Electrostatic Coupling Enables Conformational Plasticity in a Tyrosine Kinase.
    Tsai CC; Yue Z; Shen J
    J Am Chem Soc; 2019 Sep; 141(38):15092-15101. PubMed ID: 31476863
    [TBL] [Abstract][Full Text] [Related]  

  • 29. AlphaFold2-aware protein-DNA binding site prediction using graph transformer.
    Yuan Q; Chen S; Rao J; Zheng S; Zhao H; Yang Y
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35039821
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rosetta Energy Analysis of AlphaFold2 models: Point Mutations and Conformational Ensembles.
    Stein RA; Mchaourab HS
    bioRxiv; 2024 Jan; ():. PubMed ID: 37732281
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Insights into the conformational switching mechanism of the human vascular endothelial growth factor receptor type 2 kinase domain.
    Chioccioli M; Marsili S; Bonaccini C; Procacci P; Gratteri P
    J Chem Inf Model; 2012 Feb; 52(2):483-91. PubMed ID: 22229497
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of AlphaFold2 for Human Proteins via Residue Solvent Exposure.
    Bæk KT; Kepp KP
    J Chem Inf Model; 2022 Jul; 62(14):3391-3400. PubMed ID: 35785970
    [TBL] [Abstract][Full Text] [Related]  

  • 33. KinomeRun: An interactive utility for kinome target screening and interaction fingerprint analysis towards holistic visualization on kinome tree.
    Ansar S; Vetrivel U
    Chem Biol Drug Des; 2020 Oct; 96(4):1162-1175. PubMed ID: 32418310
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving the Modeling of Extracellular Ligand Binding Pockets in RosettaGPCR for Conformational Selection.
    Liessmann F; Künze G; Meiler J
    Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175495
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein flexibility in ligand docking and virtual screening to protein kinases.
    Cavasotto CN; Abagyan RA
    J Mol Biol; 2004 Mar; 337(1):209-25. PubMed ID: 15001363
    [TBL] [Abstract][Full Text] [Related]  

  • 36. KinaMetrix: a web resource to investigate kinase conformations and inhibitor space.
    Rahman R; Ung PM; Schlessinger A
    Nucleic Acids Res; 2019 Jan; 47(D1):D361-D366. PubMed ID: 30321373
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting Relative Populations of Protein Conformations without a Physics Engine Using AlphaFold 2.
    da Silva GM; Cui JY; Dalgarno DC; Lisi GP; Rubenstein BM
    bioRxiv; 2023 Dec; ():. PubMed ID: 37546747
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting Relative Populations of Protein Conformations without a Physics Engine Using AlphaFold2.
    da Silva GM; Cui JY; Dalgarno DC; Lisi GP; Rubenstein BM
    ArXiv; 2023 Jul; ():. PubMed ID: 37547653
    [TBL] [Abstract][Full Text] [Related]  

  • 39. AI-Based Protein Structure Prediction in Drug Discovery: Impacts and Challenges.
    Schauperl M; Denny RA
    J Chem Inf Model; 2022 Jul; 62(13):3142-3156. PubMed ID: 35727311
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting inactive conformations of protein kinases using active structures: conformational selection of type-II inhibitors.
    Xu M; Yu L; Wan B; Yu L; Huang Q
    PLoS One; 2011; 6(7):e22644. PubMed ID: 21818358
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.