These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37786667)

  • 21. SCAN-IT: Domain segmentation of spatial transcriptomics images by graph neural network.
    Cang Z; Ning X; Nie A; Xu M; Zhang J
    BMVC; 2021 Nov; 32():. PubMed ID: 36227018
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sampling and ranking spatial transcriptomics data embeddings to identify tissue architecture.
    Lin Y; Wang Y; Liang Y; Yu Y; Li J; Ma Q; He F; Xu D
    Front Genet; 2022; 13():912813. PubMed ID: 36035139
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Joint cell segmentation and cell type annotation for spatial transcriptomics.
    Littman R; Hemminger Z; Foreman R; Arneson D; Zhang G; Gómez-Pinilla F; Yang X; Wollman R
    Mol Syst Biol; 2021 Jun; 17(6):e10108. PubMed ID: 34057817
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatial Omics Driven Crossmodal Pretraining Applied to Graph-based Deep Learning for Cancer Pathology Analysis.
    Azher ZL; Fatemi M; Lu Y; Srinivasan G; Diallo AB; Christensen BC; Salas LA; Kolling FW; Perreard L; Palisoul SM; Vaickus LJ; Levy JJ
    Pac Symp Biocomput; 2024; 29():464-476. PubMed ID: 38160300
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Does non-COVID-19 lung lesion help? investigating transferability in COVID-19 CT image segmentation.
    Wang Y; Zhang Y; Liu Y; Tian J; Zhong C; Shi Z; Zhang Y; He Z
    Comput Methods Programs Biomed; 2021 Apr; 202():106004. PubMed ID: 33662804
    [TBL] [Abstract][Full Text] [Related]  

  • 26. scDeepSort: a pre-trained cell-type annotation method for single-cell transcriptomics using deep learning with a weighted graph neural network.
    Shao X; Yang H; Zhuang X; Liao J; Yang P; Cheng J; Lu X; Chen H; Fan X
    Nucleic Acids Res; 2021 Dec; 49(21):e122. PubMed ID: 34500471
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comprehensive overview of graph neural network-based approaches to clustering for spatial transcriptomics.
    Liu T; Fang ZY; Zhang Z; Yu Y; Li M; Yin MZ
    Comput Struct Biotechnol J; 2024 Dec; 23():106-128. PubMed ID: 38089467
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SGCAST: symmetric graph convolutional auto-encoder for scalable and accurate study of spatial transcriptomics.
    Li J; Wang J; Lin Z
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38171928
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning.
    Zeng Y; Yin R; Luo M; Chen J; Pan Z; Lu Y; Yu W; Yang Y
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36781228
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SCS: cell segmentation for high-resolution spatial transcriptomics.
    Chen H; Li D; Bar-Joseph Z
    bioRxiv; 2023 Jun; ():. PubMed ID: 37398213
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spage2vec: Unsupervised representation of localized spatial gene expression signatures.
    Partel G; Wählby C
    FEBS J; 2021 Mar; 288(6):1859-1870. PubMed ID: 32976679
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation.
    Chaitanya K; Erdil E; Karani N; Konukoglu E
    Med Image Anal; 2023 Jul; 87():102792. PubMed ID: 37054649
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatial transcriptomics prediction from histology jointly through Transformer and graph neural networks.
    Zeng Y; Wei Z; Yu W; Yin R; Yuan Y; Li B; Tang Z; Lu Y; Yang Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35849101
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multi-modal contrastive mutual learning and pseudo-label re-learning for semi-supervised medical image segmentation.
    Zhang S; Zhang J; Tian B; Lukasiewicz T; Xu Z
    Med Image Anal; 2023 Jan; 83():102656. PubMed ID: 36327656
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A continuous learning approach to brain tumor segmentation: integrating multi-scale spatial distillation and pseudo-labeling strategies.
    Li R; Ye J; Huang Y; Jin W; Xu P; Guo L
    Front Oncol; 2023; 13():1247603. PubMed ID: 38260848
    [TBL] [Abstract][Full Text] [Related]  

  • 36. STEM enables mapping of single-cell and spatial transcriptomics data with transfer learning.
    Hao M; Luo E; Chen Y; Wu Y; Li C; Chen S; Gao H; Bian H; Gu J; Wei L; Zhang X
    Commun Biol; 2024 Jan; 7(1):56. PubMed ID: 38184694
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transfer learning for data-efficient abdominal muscle segmentation with convolutional neural networks.
    McSweeney DM; Henderson EG; van Herk M; Weaver J; Bromiley PA; Green A; McWilliam A
    Med Phys; 2022 May; 49(5):3107-3120. PubMed ID: 35170063
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous alignment and surface regression using hybrid 2D-3D networks for 3D coherent layer segmentation of retinal OCT images with full and sparse annotations.
    Liu H; Wei D; Lu D; Tang X; Wang L; Zheng Y
    Med Image Anal; 2024 Jan; 91():103019. PubMed ID: 37944431
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fast clustering and cell-type annotation of scATAC data using pre-trained embeddings.
    LeRoy NJ; Smith JP; Zheng G; Rymuza J; Gharavi E; Brown DE; Zhang A; Sheffield NC
    NAR Genom Bioinform; 2024 Sep; 6(3):lqae073. PubMed ID: 38974799
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vison transformer adapter-based hyperbolic embeddings for multi-lesion segmentation in diabetic retinopathy.
    Wang Z; Lu H; Yan H; Kan H; Jin L
    Sci Rep; 2023 Jul; 13(1):11178. PubMed ID: 37429966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.