These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 37787586)

  • 1. Size-Dependent Sigmoidal Reaction Kinetics for Pyruvic Acid Condensation at the Air-Water Interface in Aqueous Microdroplets.
    Li M; Boothby C; Continetti RE; Grassian VH
    J Am Chem Soc; 2023 Oct; 145(41):22317-22321. PubMed ID: 37787586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced condensation kinetics in aqueous microdroplets driven by coupled surface reactions and gas-phase partitioning.
    Li M; Yang S; Rathi M; Kumar S; Dutcher CS; Grassian VH
    Chem Sci; 2024 Aug; 15(33):13429-13441. PubMed ID: 39183898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemistry and Photochemistry of Pyruvic Acid at the Air-Water Interface.
    Kappes KJ; Deal AM; Jespersen MF; Blair SL; Doussin JF; Cazaunau M; Pangui E; Hopper BN; Johnson MS; Vaida V
    J Phys Chem A; 2021 Feb; 125(4):1036-1049. PubMed ID: 33475373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water Microdroplets Allow Spontaneously Abiotic Production of Peptides.
    Wang W; Qiao L; He J; Ju Y; Yu K; Kan G; Guo C; Zhang H; Jiang J
    J Phys Chem Lett; 2021 Jun; 12(24):5774-5780. PubMed ID: 34134488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Condensing water vapor to droplets generates hydrogen peroxide.
    Lee JK; Han HS; Chaikasetsin S; Marron DP; Waymouth RM; Prinz FB; Zare RN
    Proc Natl Acad Sci U S A; 2020 Dec; 117(49):30934-30941. PubMed ID: 33229543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical Equilibria and Kinetics in Aqueous Solutions of Zymonic Acid.
    Perkins RJ; Shoemaker RK; Carpenter BK; Vaida V
    J Phys Chem A; 2016 Dec; 120(51):10096-10107. PubMed ID: 27991786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinguishing Surface and Bulk Reactivity: Concentration-Dependent Kinetics of Iodide Oxidation by Ozone in Microdroplets.
    Prophet AM; Polley K; Brown EK; Limmer DT; Wilson KR
    J Phys Chem A; 2024 Oct; 128(41):8970-8982. PubMed ID: 39360890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competition between organics and bromide at the aqueous solution-air interface as seen from ozone uptake kinetics and X-ray photoelectron spectroscopy.
    Lee MT; Brown MA; Kato S; Kleibert A; Türler A; Ammann M
    J Phys Chem A; 2015 May; 119(19):4600-8. PubMed ID: 25530167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct quantification of changes in pH within single levitated microdroplets and the kinetics of nitrate and chloride depletion.
    Angle KJ; Grassian VH
    Chem Sci; 2023 Jun; 14(23):6259-6268. PubMed ID: 37325137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aqueous microdroplets containing only ketones or aldehydes undergo Dakin and Baeyer-Villiger reactions.
    Gao D; Jin F; Lee JK; Zare RN
    Chem Sci; 2019 Dec; 10(48):10974-10978. PubMed ID: 32874488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous α-C-H Carboxylation of Ketones by Gaseous CO
    Basuri P; Mukhopadhyay S; Reddy KSSVP; Unni K; Spoorthi BK; Shantha Kumar J; Yamijala SSRKC; Pradeep T
    Angew Chem Int Ed Engl; 2024 Jul; 63(27):e202403229. PubMed ID: 38577991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous generation of hydrogen peroxide from aqueous microdroplets.
    Lee JK; Walker KL; Han HS; Kang J; Prinz FB; Waymouth RM; Nam HG; Zare RN
    Proc Natl Acad Sci U S A; 2019 Sep; 116(39):19294-19298. PubMed ID: 31451646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong Concentration Enhancement of Molecules at the Interface of Aqueous Microdroplets.
    Xiong H; Lee JK; Zare RN; Min W
    J Phys Chem B; 2020 Nov; 124(44):9938-9944. PubMed ID: 33084345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Ferryl Ion Intermediates in Fast Fenton Chemistry on Aqueous Microdroplets.
    Gu AY; Musgrave C; Goddard WA; Hoffmann MR; Colussi AJ
    Environ Sci Technol; 2021 Nov; 55(21):14370-14377. PubMed ID: 34213313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ observation of peptide bond formation at the water-air interface.
    Griffith EC; Vaida V
    Proc Natl Acad Sci U S A; 2012 Sep; 109(39):15697-701. PubMed ID: 22927374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Air-Water Interface of Water Microdroplets Formed by Ultrasonication or Condensation Does Not Produce H
    Musskopf NH; Gallo A; Zhang P; Petry J; Mishra H
    J Phys Chem Lett; 2021 Nov; 12(46):11422-11429. PubMed ID: 34792369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopy of growing and evaporating water droplets: exploring the variation in equilibrium droplet size with relative humidity.
    Mitchem L; Buajarern J; Hopkins RJ; Ward AD; Gilham RJ; Johnston RL; Reid JP
    J Phys Chem A; 2006 Jul; 110(26):8116-25. PubMed ID: 16805498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colliding-Droplet Microreactor: Rapid On-Demand Inertial Mixing and Metal-Catalyzed Aqueous Phase Oxidation Processes.
    Davis RD; Jacobs MI; Houle FA; Wilson KR
    Anal Chem; 2017 Nov; 89(22):12494-12501. PubMed ID: 29083875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong Electric Field Observed at the Interface of Aqueous Microdroplets.
    Xiong H; Lee JK; Zare RN; Min W
    J Phys Chem Lett; 2020 Sep; 11(17):7423-7428. PubMed ID: 32804510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.