BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 37787634)

  • 1. In-Cell Arrestin-Receptor Interaction Assays.
    Zheng C; Javitch JA; Lambert NA; Donthamsetti P; Gurevich VV
    Curr Protoc; 2023 Oct; 3(10):e890. PubMed ID: 37787634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Bioluminescence Resonance Energy Transfer (BRET) to Characterize Agonist-Induced Arrestin Recruitment to Modified and Unmodified G Protein-Coupled Receptors.
    Donthamsetti P; Quejada JR; Javitch JA; Gurevich VV; Lambert NA
    Curr Protoc Pharmacol; 2015 Sep; 70():2.14.1-2.14.14. PubMed ID: 26331887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel luminescence-based β-arrestin recruitment assay for unmodified receptors.
    Hauge Pedersen M; Pham J; Mancebo H; Inoue A; Asher WB; Javitch JA
    J Biol Chem; 2021; 296():100503. PubMed ID: 33684444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screening β-arrestin recruitment for the identification of natural ligands for orphan G-protein-coupled receptors.
    Southern C; Cook JM; Neetoo-Isseljee Z; Taylor DL; Kettleborough CA; Merritt A; Bassoni DL; Raab WJ; Quinn E; Wehrman TS; Davenport AP; Brown AJ; Green A; Wigglesworth MJ; Rees S
    J Biomol Screen; 2013 Jun; 18(5):599-609. PubMed ID: 23396314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methods to Monitor the Trafficking of β-Arrestin/G Protein-Coupled Receptor Complexes Using Enhanced Bystander BRET.
    Cao Y; Namkung Y; Laporte SA
    Methods Mol Biol; 2019; 1957():59-68. PubMed ID: 30919346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioluminescence Resonance Energy Transfer (BRET) to Detect the Interactions Between Kappa Opioid Receptor and Nonvisual Arrestins.
    Bedini A
    Methods Mol Biol; 2021; 2201():45-58. PubMed ID: 32975788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential Involvement of ACKR3 C-Tail in β-Arrestin Recruitment, Trafficking and Internalization.
    Zarca A; Perez C; van den Bor J; Bebelman JP; Heuninck J; de Jonker RJF; Durroux T; Vischer HF; Siderius M; Smit MJ
    Cells; 2021 Mar; 10(3):. PubMed ID: 33799570
    [No Abstract]   [Full Text] [Related]  

  • 8. New Insights into Arrestin Recruitment to GPCRs.
    Spillmann M; Thurner L; Romantini N; Zimmermann M; Meger B; Behe M; Waldhoer M; Schertler GFX; Berger P
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32668755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NanoLuc-Based Methods to Measure β-Arrestin2 Recruitment to G Protein-Coupled Receptors.
    Ma X; Leurs R; Vischer HF
    Methods Mol Biol; 2021; 2268():233-248. PubMed ID: 34085273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring β-arrestin recruitment via β-lactamase enzyme fragment complementation: purification of peptide E as a low-affinity ligand for mammalian bombesin receptors.
    Ikeda Y; Kumagai H; Okazaki H; Fujishiro M; Motozawa Y; Nomura S; Takeda N; Toko H; Takimoto E; Akazawa H; Morita H; Suzuki J; Yamazaki T; Komuro I; Yanagisawa M
    PLoS One; 2015; 10(6):e0127445. PubMed ID: 26030739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. β-Arrestin-2 BRET Biosensors Detect Different β-Arrestin-2 Conformations in Interaction with GPCRs.
    Oishi A; Dam J; Jockers R
    ACS Sens; 2020 Jan; 5(1):57-64. PubMed ID: 31849219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Receptor sequestration in response to β-arrestin-2 phosphorylation by ERK1/2 governs steady-state levels of GPCR cell-surface expression.
    Paradis JS; Ly S; Blondel-Tepaz É; Galan JA; Beautrait A; Scott MG; Enslen H; Marullo S; Roux PP; Bouvier M
    Proc Natl Acad Sci U S A; 2015 Sep; 112(37):E5160-8. PubMed ID: 26324936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cannabinoid CB1 and CB2 Receptor-Mediated Arrestin Translocation: Species, Subtype, and Agonist-Dependence.
    Ibsen MS; Finlay DB; Patel M; Javitch JA; Glass M; Grimsey NL
    Front Pharmacol; 2019; 10():350. PubMed ID: 31024316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Arrestin Recruitment to Chemokine Receptors by Bioluminescence Resonance Energy Transfer.
    Bonneterre J; Montpas N; Boularan C; Galés C; Heveker N
    Methods Enzymol; 2016; 570():131-53. PubMed ID: 26921945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. beta-Arrestin recruitment assay for the identification of agonists of the sphingosine 1-phosphate receptor EDG1.
    van Der Lee MM; Bras M; van Koppen CJ; Zaman GJ
    J Biomol Screen; 2008 Dec; 13(10):986-98. PubMed ID: 19036707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mini G protein probes for active G protein-coupled receptors (GPCRs) in live cells.
    Wan Q; Okashah N; Inoue A; Nehmé R; Carpenter B; Tate CG; Lambert NA
    J Biol Chem; 2018 May; 293(19):7466-7473. PubMed ID: 29523687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing Arrestin Function Using Intramolecular FlAsH-BRET Biosensors.
    Strungs EG; Luttrell LM; Lee MH
    Methods Mol Biol; 2019; 1957():309-322. PubMed ID: 30919362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of BRET to Measure β-Arrestin Recruitment at Oxytocin and Vasopressin Receptors.
    Muratspahić E; Gattringer J; Gruber CW
    Methods Mol Biol; 2022; 2384():221-229. PubMed ID: 34550577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of GPCR/beta-arrestin interactions in live cells using bioluminescence resonance energy transfer technology.
    Kocan M; Pfleger KD
    Methods Mol Biol; 2009; 552():305-17. PubMed ID: 19513659
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.