These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37788183)

  • 1. Leveraging Microgels Prepared from Poly(ethylene glycol) Bisepoxide and Polyetheramine for Versatile Surface Structuring of Agarose Hydrogels.
    Yu X; Wang X; He W
    ACS Appl Bio Mater; 2023 Oct; 6(10):4430-4438. PubMed ID: 37788183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bisepoxide-Jeffamine microgel synthesis and application toward heterogeneous surface morphology for differential neuronal/non-neuronal cell responses in vitro.
    Yu X; Cheng F; He W
    Colloids Surf B Biointerfaces; 2021 Nov; 207():112009. PubMed ID: 34339968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Jammed microgel growth medium prepared by flash-solidification of agarose for 3D cell culture and 3D bioprinting.
    Sreepadmanabh M; Ganesh M; Bhat R; Bhattacharjee T
    Biomed Mater; 2023 May; 18(4):. PubMed ID: 37146614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microgel dynamics within the 3D porous structure of transparent PEG hydrogels.
    Bassu G; Laurati M; Fratini E
    Colloids Surf B Biointerfaces; 2023 Jan; 221():112938. PubMed ID: 36368149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Actuation of Hydrogel Architectures Prepared by Electrophoretic Adhesion of Thermoresponsive Microgels.
    Asoh TA; Takai S; Uyama H
    Langmuir; 2022 May; 38(17):5183-5187. PubMed ID: 34665626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembled poly(ethylene glycol)-co-acrylic acid microgels to inhibit bacterial colonization of synthetic surfaces.
    Wang Q; Uzunoglu E; Wu Y; Libera M
    ACS Appl Mater Interfaces; 2012 May; 4(5):2498-506. PubMed ID: 22519439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidics-assisted generation of stimuli-responsive hydrogels based on alginates incorporated with thermo-responsive and amphiphilic polymers as novel biomaterials.
    Karakasyan C; Mathos J; Lack S; Davy J; Marquis M; Renard D
    Colloids Surf B Biointerfaces; 2015 Nov; 135():619-629. PubMed ID: 26322476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic Synthesis of Microgel Building Blocks for Microporous Annealed Particle Scaffold.
    Roosa C; Pruett L; Trujillo J; Rodriguez A; Pfaff B; Cornell N; Flanagan C; Griffin DR
    J Vis Exp; 2022 Jun; (184):. PubMed ID: 35781297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytophilic Agarose-Epoxide-Amine Cryogels Engineered with Granulated Microstructures.
    Yu X; Wang L; He W
    ACS Appl Bio Mater; 2023 Feb; 6(2):694-702. PubMed ID: 36695539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does the Size of Microgels Influence the Toughness of Microgel-Reinforced Hydrogels?
    Kessler M; Nassisi Q; Amstad E
    Macromol Rapid Commun; 2022 Aug; 43(15):e2200196. PubMed ID: 35467048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrolytically Degradable Microgels with Tunable Mechanical Properties Modulate the Host Immune Response.
    Coronel MM; Martin KE; Hunckler MD; Kalelkar P; Shah RM; García AJ
    Small; 2022 Sep; 18(36):e2106896. PubMed ID: 35274457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Doubly crosslinked poly(vinyl amine) microgels: hydrogels of covalently inter-linked cationic microgel particles.
    Thaiboonrod S; Milani AH; Saunders BR
    J Mater Chem B; 2014 Jan; 2(1):110-119. PubMed ID: 32261304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel microgel-based scaffolds to study the effect of degradability on human dermal fibroblasts.
    Zhou W; Stukel J; AlNiemi A; Willits RK
    Biomed Mater; 2018 Jul; 13(5):055007. PubMed ID: 29869613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 4D Printing of Extrudable and Degradable Poly(Ethylene Glycol) Microgel Scaffolds for Multidimensional Cell Culture.
    Miksch CE; Skillin NP; Kirkpatrick BE; Hach GK; Rao VV; White TJ; Anseth KS
    Small; 2022 Sep; 18(36):e2200951. PubMed ID: 35732614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication, characterization and emulsifying properties of agarose microgel.
    Jiang W; Wang J; Yuan D; Gao Z; Hu B; Li Y; Wu Y
    Int J Biol Macromol; 2023 Jun; 241():124565. PubMed ID: 37100331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cartilage tissue formation through assembly of microgels containing mesenchymal stem cells.
    Li F; Truong VX; Fisch P; Levinson C; Glattauer V; Zenobi-Wong M; Thissen H; Forsythe JS; Frith JE
    Acta Biomater; 2018 Sep; 77():48-62. PubMed ID: 30006317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidics-assisted fabrication of gelatin-silica core-shell microgels for injectable tissue constructs.
    Cha C; Oh J; Kim K; Qiu Y; Joh M; Shin SR; Wang X; Camci-Unal G; Wan KT; Liao R; Khademhosseini A
    Biomacromolecules; 2014 Jan; 15(1):283-90. PubMed ID: 24344625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interplay between degradability and integrin signaling on mesenchymal stem cell function within poly(ethylene glycol) based microporous annealed particle hydrogels.
    Xin S; Gregory CA; Alge DL
    Acta Biomater; 2020 Jan; 101():227-236. PubMed ID: 31711899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composite hydrogels with temperature sensitive heterogeneities: influence of gel matrix on the volume phase transition of embedded poly-(N-isopropylacrylamide) microgels.
    Meid J; Friedrich T; Tieke B; Lindner P; Richtering W
    Phys Chem Chem Phys; 2011 Feb; 13(8):3039-47. PubMed ID: 20882241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of Three-Dimensional Cell Culture Scaffolds Using Laminin Peptide-Conjugated Agarose Microgels.
    Yamada Y; Yoshida C; Hamada K; Kikkawa Y; Nomizu M
    Biomacromolecules; 2020 Sep; 21(9):3765-3771. PubMed ID: 32701263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.