These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37788247)

  • 1. Probing Linear to Nonlinear Damping in 2D Semiconductor Nanoelectromechanical Resonators toward a Unified Quality Factor Model.
    Zhang P; Jia Y; Liu Z; Zhou X; Xiao D; Chen Y; Jia H; Yang R
    Nano Lett; 2023 Oct; 23(20):9375-9382. PubMed ID: 37788247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strain-Modulated Dissipation in Two-Dimensional Molybdenum Disulfide Nanoelectromechanical Resonators.
    Zhang P; Jia Y; Xie M; Liu Z; Shen S; Wei J; Yang R
    ACS Nano; 2022 Feb; 16(2):2261-2270. PubMed ID: 35107966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman Spectroscopic Probe for Nonlinear MoS
    Yang R; Yousuf SMEH; Lee J; Zhang P; Liu Z; Feng PX
    Nano Lett; 2022 Jul; 22(14):5780-5787. PubMed ID: 35792575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear Stiffness and Nonlinear Damping in Atomically Thin MoS
    Kaisar T; Lee J; Li D; Shaw SW; Feng PX
    Nano Lett; 2022 Dec; 22(24):9831-9838. PubMed ID: 36480748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene nanoelectromechanical systems as stochastic-frequency oscillators.
    Miao T; Yeom S; Wang P; Standley B; Bockrath M
    Nano Lett; 2014 Jun; 14(6):2982-7. PubMed ID: 24742005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-sensing, tunable monolayer MoS
    Manzeli S; Dumcenco D; Migliato Marega G; Kis A
    Nat Commun; 2019 Oct; 10(1):4831. PubMed ID: 31645562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-Dependent Nonlinear Damping in Palladium Nanomechanical Resonators.
    Kumar S; Rebari S; Pal SP; Yadav SS; Kumar A; Aggarwal A; Indrajeet S; Venkatesan A
    Nano Lett; 2021 Apr; 21(7):2975-2981. PubMed ID: 33755479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal hysteresis controlled reconfigurable MoS
    Wang Z; Yang R; Feng PX
    Nanoscale; 2021 Nov; 13(43):18089-18095. PubMed ID: 34730595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy Dissipation in Graphene Mechanical Resonators with and without Free Edges.
    Takamura M; Okamoto H; Furukawa K; Yamaguchi H; Hibino H
    Micromachines (Basel); 2016 Sep; 7(9):. PubMed ID: 30404329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissipation from Interlayer Friction in Graphene Nanoelectromechanical Resonators.
    Ferrari PF; Kim S; van der Zande AM
    Nano Lett; 2021 Oct; 21(19):8058-8065. PubMed ID: 34559536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Detection of Akhiezer Damping in a Silicon MEMS Resonator.
    Rodriguez J; Chandorkar SA; Watson CA; Glaze GM; Ahn CH; Ng EJ; Yang Y; Kenny TW
    Sci Rep; 2019 Feb; 9(1):2244. PubMed ID: 30783192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsic localized modes in parametrically driven arrays of nonlinear resonators.
    Kenig E; Malomed BA; Cross MC; Lifshitz R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046202. PubMed ID: 19905410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene.
    Eichler A; Moser J; Chaste J; Zdrojek M; Wilson-Rae I; Bachtold A
    Nat Nanotechnol; 2011 May; 6(6):339-42. PubMed ID: 21572430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Symmetry-Breaking-Induced Frequency Combs in Graphene Resonators.
    Keşkekler A; Arjmandi-Tash H; Steeneken PG; Alijani F
    Nano Lett; 2022 Aug; 22(15):6048-6054. PubMed ID: 35904442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermoelastic dissipation in MEMS/NEMS flexural mode resonators.
    Yan J; Seshia AA
    J Nanosci Nanotechnol; 2009 Feb; 9(2):1011-4. PubMed ID: 19441443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning nonlinear damping in graphene nanoresonators by parametric-direct internal resonance.
    Keşkekler A; Shoshani O; Lee M; van der Zant HSJ; Steeneken PG; Alijani F
    Nat Commun; 2021 Feb; 12(1):1099. PubMed ID: 33597524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High Quality Factors in Superlattice Ferroelectric Hf
    Zheng XQ; Tharpe T; Enamul Hoque Yousuf SM; Rudawski NG; Feng PX; Tabrizian R
    ACS Appl Mater Interfaces; 2022 Aug; 14(32):36807-36814. PubMed ID: 35920004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface adsorbate fluctuations and noise in nanoelectromechanical systems.
    Yang YT; Callegari C; Feng XL; Roukes ML
    Nano Lett; 2011 Apr; 11(4):1753-9. PubMed ID: 21388120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a Laterally Oscillating Microresonator Operating in the Nonlinear Region.
    Ramanan A; Teoh YX; Ma W; Ye W
    Micromachines (Basel); 2016 Aug; 7(8):. PubMed ID: 30404303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hexagonal boron nitride nanomechanical resonators with spatially visualized motion.
    Zheng XQ; Lee J; Feng PX
    Microsyst Nanoeng; 2017; 3():17038. PubMed ID: 31057874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.