These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 37788319)
41. Determination of the structure and composition of Au-Ag bimetallic spherical nanoparticles using single particle ICP-MS measurements performed with normal and high temporal resolution. Kéri A; Kálomista I; Ungor D; Bélteki Á; Csapó E; Dékány I; Prohaska T; Galbács G Talanta; 2018 Mar; 179():193-199. PubMed ID: 29310221 [TBL] [Abstract][Full Text] [Related]
42. Isotope Dilution Analysis for Particle Mass Determination Using Single-Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry: Application to Size Determination of Silver Nanoparticles. Aramendía M; Leite D; Resano J; Resano M; Billimoria K; Goenaga-Infante H Nanomaterials (Basel); 2023 Aug; 13(17):. PubMed ID: 37686900 [TBL] [Abstract][Full Text] [Related]
43. Capabilities of single particle inductively coupled plasma mass spectrometry for the size measurement of nanoparticles: a case study on gold nanoparticles. Liu J; Murphy KE; MacCuspie RI; Winchester MR Anal Chem; 2014 Apr; 86(7):3405-14. PubMed ID: 24575780 [TBL] [Abstract][Full Text] [Related]
44. Nanoparticle size detection limits by single particle ICP-MS for 40 elements. Lee S; Bi X; Reed RB; Ranville JF; Herckes P; Westerhoff P Environ Sci Technol; 2014 Sep; 48(17):10291-300. PubMed ID: 25122540 [TBL] [Abstract][Full Text] [Related]
46. Comparison of sp-ICP-MS and MDG-ICP-MS for the determination of particle number concentration. Gschwind S; Aja Montes Mde L; Günther D Anal Bioanal Chem; 2015 May; 407(14):4035-44. PubMed ID: 25796528 [TBL] [Abstract][Full Text] [Related]
47. Overcoming challenges in single particle inductively coupled plasma mass spectrometry measurement of silver nanoparticles. Liu J; Murphy KE; Winchester MR; Hackley VA Anal Bioanal Chem; 2017 Oct; 409(25):6027-6039. PubMed ID: 28815280 [TBL] [Abstract][Full Text] [Related]
48. Size and isotope analysis of individual nanoparticles by multi-collector ICP-MS using "event-triggered signal capture" with a high-speed oscilloscope. Xing P; Belshaw NS; Dong J; Li L; Geng Y; Zheng H; Liu X; Zhu Z Talanta; 2024 Oct; 278():126540. PubMed ID: 39003837 [TBL] [Abstract][Full Text] [Related]
49. Size Uncertainty in Individual Nanoparticles Measured by Single Particle Inductively Coupled Plasma Mass Spectrometry. Yamashita S; Miyashita SI; Hirata T Nanomaterials (Basel); 2023 Jun; 13(13):. PubMed ID: 37446474 [TBL] [Abstract][Full Text] [Related]
50. Detection and characterisation of aluminium-containing nanoparticles in Chinese noodles by single particle ICP-MS. Loeschner K; Correia M; López Chaves C; Rokkjær I; Sloth JJ Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2018 Jan; 35(1):86-93. PubMed ID: 28934065 [TBL] [Abstract][Full Text] [Related]
52. Validation of Single Particle ICP-MS for Routine Measurements of Nanoparticle Size and Number Size Distribution. Montoro Bustos AR; Purushotham KP; Possolo A; Farkas N; Vladár AE; Murphy KE; Winchester MR Anal Chem; 2018 Dec; 90(24):14376-14386. PubMed ID: 30472826 [TBL] [Abstract][Full Text] [Related]
53. Semiquantitative Analysis for High-Speed Mapping Applications of Biological Samples Using LA-ICP-TOFMS. Metarapi D; Schweikert A; Jerše A; Schaier M; van Elteren JT; Koellensperger G; Theiner S; Šala M Anal Chem; 2023 May; 95(19):7804-7812. PubMed ID: 37122168 [TBL] [Abstract][Full Text] [Related]
54. Vertical distribution of inorganic nanoparticles in a Norwegian fjord. Bruvold AS; Bienfait AM; Ervik TK; Loeschner K; Valdersnes S Mar Environ Res; 2023 Jun; 188():105975. PubMed ID: 37086530 [TBL] [Abstract][Full Text] [Related]
55. Detection, distribution and environmental risk of metal-based nanoparticles in a coastal bay. Li G; Liu X; Wang H; Liang S; Xia B; Sun K; Li X; Dai Y; Yue T; Zhao J; Wang Z; Xing B Water Res; 2023 Aug; 242():120242. PubMed ID: 37390658 [TBL] [Abstract][Full Text] [Related]
56. A Novel Strategy for the Detection and Quantification of Nanoplastics by Single Particle Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Jiménez-Lamana J; Marigliano L; Allouche J; Grassl B; Szpunar J; Reynaud S Anal Chem; 2020 Sep; 92(17):11664-11672. PubMed ID: 32786493 [TBL] [Abstract][Full Text] [Related]
57. Inductively coupled plasma-optical emission spectrometry/mass spectrometry for the determination of Cu, Ni, Pb and Zn in seawater after ionic imprinted polymer based solid phase extraction. Otero-Romaní J; Moreda-Piñeiro A; Bermejo-Barrera P; Martin-Esteban A Talanta; 2009 Aug; 79(3):723-9. PubMed ID: 19576436 [TBL] [Abstract][Full Text] [Related]
58. Determination of metallic nanoparticles in air filters by means single particle inductively coupled plasma mass spectrometry. Torregrosa D; Grindlay G; de la Guardia M; Gras L; Mora J Talanta; 2023 Jan; 252():123818. PubMed ID: 36029682 [TBL] [Abstract][Full Text] [Related]
59. Separation and size characterization of highly polydisperse titanium dioxide nanoparticles (E171) in powdered beverages by using Asymmetric Flow Field-Flow Fractionation hyphenated with Multi-Angle Light Scattering and Inductively Coupled Plasma Mass Spectrometry. Li B; Chua SL; Yu D; Chan SH; Li A J Chromatogr A; 2021 Apr; 1643():462059. PubMed ID: 33780882 [TBL] [Abstract][Full Text] [Related]
60. Analytical applications of single particle inductively coupled plasma mass spectrometry: a comprehensive and critical review. Bolea E; Jimenez MS; Perez-Arantegui J; Vidal JC; Bakir M; Ben-Jeddou K; Gimenez-Ingalaturre AC; Ojeda D; Trujillo C; Laborda F Anal Methods; 2021 Jul; 13(25):2742-2795. PubMed ID: 34159952 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]