These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37788335)

  • 1. Electrocatalytic Desulfurizative Amination of Thioureas to Guanidines.
    Jiang W; Wang B; Song C; Liu J
    J Org Chem; 2023 Oct; 88(20):14601-14609. PubMed ID: 37788335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalyst- and Reagent-Free Electrochemical Azole C-H Amination.
    Qiu Y; Struwe J; Meyer TH; Oliveira JCA; Ackermann L
    Chemistry; 2018 Sep; 24(49):12784-12789. PubMed ID: 29901828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and Structure of Hypervalent Iodine(III) Reagents Containing Phthalimidate and Application to Oxidative Amination Reactions.
    Kiyokawa K; Kosaka T; Kojima T; Minakata S
    Angew Chem Int Ed Engl; 2015 Nov; 54(46):13719-23. PubMed ID: 26381547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. C-H Oxygenation Reactions Enabled by Dual Catalysis with Electrogenerated Hypervalent Iodine Species and Ruthenium Complexes.
    Massignan L; Tan X; Meyer TH; Kuniyil R; Messinis AM; Ackermann L
    Angew Chem Int Ed Engl; 2020 Feb; 59(8):3184-3189. PubMed ID: 31777143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical Oxidative Syntheses of NH-Sulfoximines, NH-Sulfonimidamides and Dibenzothiazines via Anodically Generated Hypervalent Iodine Intermediates.
    Kong X; Lin L; Chen X; Chen Y; Wang W; Xu B
    ChemSusChem; 2021 Aug; 14(16):3277-3282. PubMed ID: 34292660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase-transfer-catalyzed alkylation of guanidines by alkyl halides under biphasic conditions: a convenient protocol for the synthesis of highly functionalized guanidines.
    Powell DA; Ramsden PD; Batey RA
    J Org Chem; 2003 Mar; 68(6):2300-9. PubMed ID: 12636395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Late stage functionalization of heterocycles using hypervalent iodine(iii) reagents.
    Budhwan R; Yadav S; Murarka S
    Org Biomol Chem; 2019 Jul; 17(26):6326-6341. PubMed ID: 31215580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Updates on Electrogenerated Hypervalent Iodine Derivatives and Their Applications as Mediators in Organic Electrosynthesis.
    Chen C; Wang X; Yang T
    Front Chem; 2022; 10():883474. PubMed ID: 35494647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mild method for the synthesis of carbamate-protected guanidines using the Burgess reagent.
    Maki T; Tsuritani T; Yasukata T
    Org Lett; 2014 Apr; 16(7):1868-71. PubMed ID: 24628041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General Dialdehyde Click Chemistry for Amine Bioconjugation.
    Elahipanah S; O'Brien PJ; Rogozhnikov D; Yousaf MN
    Bioconjug Chem; 2017 May; 28(5):1422-1433. PubMed ID: 28436674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iodoarene-Catalyzed Stereospecific Intramolecular sp(3) C-H Amination: Reaction Development and Mechanistic Insights.
    Zhu C; Liang Y; Hong X; Sun H; Sun WY; Houk KN; Shi Z
    J Am Chem Soc; 2015 Jun; 137(24):7564-7. PubMed ID: 26035639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expanding the substrate scope for C-H amination reactions: oxidative cyclization of urea and guanidine derivatives.
    Kim M; Mulcahy JV; Espino CG; Du Bois J
    Org Lett; 2006 Mar; 8(6):1073-6. PubMed ID: 16524271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous-Flow Electrochemical Generator of Hypervalent Iodine Reagents: Synthetic Applications.
    Elsherbini M; Winterson B; Alharbi H; Folgueiras-Amador AA; Génot C; Wirth T
    Angew Chem Int Ed Engl; 2019 Jul; 58(29):9811-9815. PubMed ID: 31050149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in hypervalent iodine(III)-catalyzed functionalization of alkenes.
    Li X; Chen P; Liu G
    Beilstein J Org Chem; 2018; 14():1813-1825. PubMed ID: 30112085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. μ-Oxo-Hypervalent-Iodine-Catalyzed Oxidative C-H Amination for Synthesis of Benzolactam Derivatives.
    Sasa H; Mori K; Kikushima K; Kita Y; Dohi T
    Chem Pharm Bull (Tokyo); 2022 Feb; 70(2):106-110. PubMed ID: 34897163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-Selective C-H Functionalization via Synergistic Use of Electrochemistry and Transition Metal Catalysis.
    Jiao KJ; Xing YK; Yang QL; Qiu H; Mei TS
    Acc Chem Res; 2020 Feb; 53(2):300-310. PubMed ID: 31939278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shelf-stable electrophilic reagents for trifluoromethylthiolation.
    Shao X; Xu C; Lu L; Shen Q
    Acc Chem Res; 2015 May; 48(5):1227-36. PubMed ID: 25947041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidant-switchable selective synthesis of 2-aminobenzimidazoles via C-H amination/acetoxylation of guanidines.
    Chi Y; Zhang WX; Xi Z
    Org Lett; 2014 Dec; 16(24):6274-7. PubMed ID: 25474397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iodine(V)-Based Oxidants in Oxidation Reactions.
    Shetgaonkar SE; Jothish S; Dohi T; Singh FV
    Molecules; 2023 Jul; 28(13):. PubMed ID: 37446912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical Oxidative Cross-Coupling with Hydrogen Evolution Reactions.
    Yuan Y; Lei A
    Acc Chem Res; 2019 Dec; 52(12):3309-3324. PubMed ID: 31774271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.