BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 37788442)

  • 1. Peptide-Based Coacervate Protocells with Cytoprotective Metal-Phenolic Network Membranes.
    Jiang L; Zeng Y; Li H; Lin Z; Liu H; Richardson JJ; Gao Z; Wu D; Liu L; Caruso F; Zhou J
    J Am Chem Soc; 2023 Nov; 145(44):24108-24115. PubMed ID: 37788442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membranized Coacervate Microdroplets: from Versatile Protocell Models to Cytomimetic Materials.
    Gao N; Mann S
    Acc Chem Res; 2023 Feb; 56(3):297-307. PubMed ID: 36625520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coacervate Microdroplets as Synthetic Protocells for Cell Mimicking and Signaling Communications.
    Wang Z; Zhang M; Zhou Y; Zhang Y; Wang K; Liu J
    Small Methods; 2023 Dec; 7(12):e2300042. PubMed ID: 36908048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical Self-Assembly of a Copolymer-Stabilized Coacervate Protocell.
    Mason AF; Buddingh' BC; Williams DS; van Hest JCM
    J Am Chem Soc; 2017 Dec; 139(48):17309-17312. PubMed ID: 29134798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial Positioning and Chemical Coupling in Coacervate-in-Proteinosome Protocells.
    Booth R; Qiao Y; Li M; Mann S
    Angew Chem Int Ed Engl; 2019 Jul; 58(27):9120-9124. PubMed ID: 31034692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide-Based Coacervate-Core Vesicles with Semipermeable Membranes.
    Abbas M; Law JO; Grellscheid SN; Huck WTS; Spruijt E
    Adv Mater; 2022 Aug; 34(34):e2202913. PubMed ID: 35796384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physicochemical Characterization of Polymer-Stabilized Coacervate Protocells.
    Yewdall NA; Buddingh BC; Altenburg WJ; Timmermans SBPE; Vervoort DFM; Abdelmohsen LKEA; Mason AF; van Hest JCM
    Chembiochem; 2019 Oct; 20(20):2643-2652. PubMed ID: 31012235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous Transformation from Membrane-less Coacervates to Membranized Coacervates and Giant Vesicles: toward Multicompartmental Protocells with Complex (Membrane) Architectures.
    Appelhans D; Zhou Y; Zhang K; Moreno S; Temme A; Voit B
    Angew Chem Int Ed Engl; 2024 Jun; ():e202407472. PubMed ID: 38847278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous Membranization in a Silk-Based Coacervate Protocell Model.
    Yin Z; Tian L; Patil AJ; Li M; Mann S
    Angew Chem Int Ed Engl; 2022 Apr; 61(17):e202202302. PubMed ID: 35176203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant Cell-Inspired Membranization of Coacervate Protocells with a Structured Polysaccharide Layer.
    Ji Y; Lin Y; Qiao Y
    J Am Chem Soc; 2023 Jun; 145(23):12576-12585. PubMed ID: 37267599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial Organization in Proteinaceous Membrane-Stabilized Coacervate Protocells.
    Li J; Liu X; Abdelmohsen LKEA; Williams DS; Huang X
    Small; 2019 Sep; 15(36):e1902893. PubMed ID: 31298806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supramolecular Nanoscaffolds within Cytomimetic Protocells as Signal Localization Hubs.
    Magdalena Estirado E; Mason AF; Alemán García MÁ; van Hest JCM; Brunsveld L
    J Am Chem Soc; 2020 May; 142(20):9106-9111. PubMed ID: 32356660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predatory behaviour in synthetic protocell communities.
    Qiao Y; Li M; Booth R; Mann S
    Nat Chem; 2017 Feb; 9(2):110-119. PubMed ID: 28282044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA nanotubes in coacervate microdroplets as biomimetic cytoskeletons modulate the liquid fluidic properties of protocells.
    Zhou S; Cai X; Zhang Y; Chen Q; Yang X; Wang K; Jian L; Liu J
    J Mater Chem B; 2022 Oct; 10(40):8322-8329. PubMed ID: 36168959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triggerable Protocell Capture in Nanoparticle-Caged Coacervate Microdroplets.
    Gao N; Xu C; Yin Z; Li M; Mann S
    J Am Chem Soc; 2022 Mar; 144(9):3855-3862. PubMed ID: 35192333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmed spatial organization of biomacromolecules into discrete, coacervate-based protocells.
    Altenburg WJ; Yewdall NA; Vervoort DFM; van Stevendaal MHME; Mason AF; van Hest JCM
    Nat Commun; 2020 Dec; 11(1):6282. PubMed ID: 33293610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide-based coacervates as biomimetic protocells.
    Abbas M; Lipiński WP; Wang J; Spruijt E
    Chem Soc Rev; 2021 Mar; 50(6):3690-3705. PubMed ID: 33616129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autonomic Integration in Nested Protocell Communities.
    Yin Z; Gao N; Xu C; Li M; Mann S
    J Am Chem Soc; 2023 Jul; 145(27):14727-14736. PubMed ID: 37369121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osmotic-Induced Reconfiguration and Activation in Membranized Coacervate-Based Protocells.
    Zhang Y; Wang Z; Li M; Xu C; Gao N; Yin Z; Wang K; Mann S; Liu J
    J Am Chem Soc; 2023 May; 145(18):10396-10403. PubMed ID: 37104061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of Membraneless and Multicompartmentalized Coacervate Protocells Controlling a Cell Metabolism-like Cascade Reaction.
    Perin GB; Moreno S; Zhou Y; Günther M; Boye S; Voit B; Felisberti MI; Appelhans D
    Biomacromolecules; 2023 Dec; 24(12):5807-5822. PubMed ID: 37984848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.