BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 37788442)

  • 21. Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model.
    Dora Tang TY; Rohaida Che Hak C; Thompson AJ; Kuimova MK; Williams DS; Perriman AW; Mann S
    Nat Chem; 2014 Jun; 6(6):527-33. PubMed ID: 24848239
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coacervate microdroplet protocell-mediated gene transfection for nitric oxide production and induction of cell apoptosis.
    Zhang Y; Yao Y; Liu S; Chen Y; Zhou S; Wang K; Yang X; Liu J
    J Mater Chem B; 2021 Dec; 9(47):9784-9793. PubMed ID: 34820677
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biofunctional coacervate-based artificial protocells with membrane-like and cytoplasm-like structures for the treatment of persistent hyperuricemia.
    Hu Q; Lan H; Tian Y; Li X; Wang M; Zhang J; Yu Y; Chen W; Kong L; Guo Y; Zhang Z
    J Control Release; 2024 Jan; 365():176-192. PubMed ID: 37992873
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fatty Acid-Based Coacervates as a Membrane-free Protocell Model.
    Zhou L; Koh JJ; Wu J; Fan X; Chen H; Hou X; Jiang L; Lu X; Li Z; He C
    Bioconjug Chem; 2022 Mar; 33(3):444-451. PubMed ID: 35138820
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective amide bond formation in redox-active coacervate protocells.
    Wang J; Abbas M; Wang J; Spruijt E
    Nat Commun; 2023 Dec; 14(1):8492. PubMed ID: 38129391
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mimicking Cellular Compartmentalization in a Hierarchical Protocell through Spontaneous Spatial Organization.
    Mason AF; Yewdall NA; Welzen PLW; Shao J; van Stevendaal M; van Hest JCM; Williams DS; Abdelmohsen LKEA
    ACS Cent Sci; 2019 Aug; 5(8):1360-1365. PubMed ID: 31482118
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spontaneous structuration in coacervate-based protocells by polyoxometalate-mediated membrane assembly.
    Williams DS; Patil AJ; Mann S
    Small; 2014 May; 10(9):1830-40. PubMed ID: 24515342
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Programmatically Dynamic Microcompartmentation in Coacervate-in-Pickering Emulsion Protocell.
    Chen M; Liu G; Zhang M; Li Y; Hong X; Yang H
    Small; 2023 Mar; 19(10):e2206437. PubMed ID: 36564366
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mass Transport in Coacervate-Based Protocell Coated with Fatty Acid under Nonequilibrium Conditions.
    Jing H; Lin Y; Chang H; Bai Q; Liang D
    Langmuir; 2019 Apr; 35(16):5587-5593. PubMed ID: 30942596
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Membranization of Coacervates into Artificial Phagocytes with Predation toward Bacteria.
    Zhao C; Li J; Wang S; Xu Z; Wang X; Liu X; Wang L; Huang X
    ACS Nano; 2021 Jun; 15(6):10048-10057. PubMed ID: 34047543
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Terpolymer-stabilized complex coacervates: A robust and versatile synthetic cell platform.
    Mason AF; Altenburg WJ; Song S; van Stevendaal M; van Hest JCM
    Methods Enzymol; 2021; 646():51-82. PubMed ID: 33453933
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanoparticle-Assembled Vacuolated Coacervates Control Macromolecule Spatiotemporal Distribution to Provide a Stable Segregated Cell Microenvironment.
    Zhao P; Yang B; Xu X; Lai NC; Li R; Yang X; Bian L
    Adv Mater; 2021 Mar; 33(9):e2007209. PubMed ID: 33506543
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthetic cellularity based on non-lipid micro-compartments and protocell models.
    Li M; Huang X; Tang TY; Mann S
    Curr Opin Chem Biol; 2014 Oct; 22():1-11. PubMed ID: 24952153
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering of Biocompatible Coacervate-Based Synthetic Cells.
    van Stevendaal MHME; Vasiukas L; Yewdall NA; Mason AF; van Hest JCM
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):7879-7889. PubMed ID: 33587612
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Non-equilibrium conditions inside rock pores drive fission, maintenance and selection of coacervate protocells.
    Ianeselli A; Tetiker D; Stein J; Kühnlein A; Mast CB; Braun D; Dora Tang TY
    Nat Chem; 2022 Jan; 14(1):32-39. PubMed ID: 34873298
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Membrane-confined liquid-liquid phase separation toward artificial organelles.
    Mu W; Ji Z; Zhou M; Wu J; Lin Y; Qiao Y
    Sci Adv; 2021 May; 7(22):. PubMed ID: 34049872
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Superstructural ordering in self-sorting coacervate-based protocell networks.
    Mu W; Jia L; Zhou M; Wu J; Lin Y; Mann S; Qiao Y
    Nat Chem; 2024 Feb; 16(2):158-167. PubMed ID: 37932411
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comb Polyelectrolytes Stabilize Complex Coacervate Microdroplet Dispersions.
    Gao S; Srivastava S
    ACS Macro Lett; 2022 Jul; 11(7):902-909. PubMed ID: 35786870
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Living material assembly of bacteriogenic protocells.
    Xu C; Martin N; Li M; Mann S
    Nature; 2022 Sep; 609(7929):1029-1037. PubMed ID: 36104562
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.