These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 37788457)

  • 21. Progress in Preparation of Silk Fibroin Microspheres for Biomedical Applications.
    Long S; Xiao Y; Zhang X
    Pharm Nanotechnol; 2020; 8(5):358-371. PubMed ID: 33038918
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of Flexible, Fully Organic, Degradable Energy Storage Devices Using Silk Proteins.
    Pal RK; Kundu SC; Yadavalli VK
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9620-9628. PubMed ID: 29480009
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Green Flexible Electronics: Natural Materials, Fabrication, and Applications.
    Hui Z; Zhang L; Ren G; Sun G; Yu HD; Huang W
    Adv Mater; 2023 Jul; 35(28):e2211202. PubMed ID: 36763956
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transparent, stretchable and degradable protein electronic skin for biomechanical energy scavenging and wireless sensing.
    Gong H; Xu Z; Yang Y; Xu Q; Li X; Cheng X; Huang Y; Zhang F; Zhao J; Li S; Liu X; Huang Q; Guo W
    Biosens Bioelectron; 2020 Dec; 169():112567. PubMed ID: 32947084
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of robust, ultra-smooth, flexible and transparent regenerated silk composite films for bio-integrated electronic device applications.
    Gunapu DVSK; Prasad YB; Mudigunda VS; Yasam P; Rengan AK; Korla R; Vanjari SRK
    Int J Biol Macromol; 2021 Apr; 176():498-509. PubMed ID: 33571588
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rheological characterization, compression, and injection molding of hydroxyapatite-silk fibroin composites.
    McNamara SL; McCarthy EM; Schmidt DF; Johnston SP; Kaplan DL
    Biomaterials; 2021 Feb; 269():120643. PubMed ID: 33434713
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Viscoelastic Silk Fibroin Hydrogels with Tunable Strength.
    Yao D; Li M; Wang T; Sun F; Su C; Shi T
    ACS Biomater Sci Eng; 2021 Feb; 7(2):636-647. PubMed ID: 33393282
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Manufacture of Unbreakable Bionics via Multifunctional and Self-Healing Silk-Graphene Hydrogels.
    Kadumudi FB; Hasany M; Pierchala MK; Jahanshahi M; Taebnia N; Mehrali M; Mitu CF; Shahbazi MA; Zsurzsan TG; Knott A; Andresen TL; Dolatshahi-Pirouz A
    Adv Mater; 2021 Sep; 33(35):e2100047. PubMed ID: 34247417
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Silk Fibroin as a Green Material.
    DeBari MK; King CI; Altgold TA; Abbott RD
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3530-3544. PubMed ID: 34260194
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly elastomeric photocurable silk hydrogels.
    Kuang D; Jiang F; Wu F; Kaur K; Ghosh S; Kundu SC; Lu S
    Int J Biol Macromol; 2019 Aug; 134():838-845. PubMed ID: 31103592
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tunable Light-Actuated Interpenetrating Networks of Silk Fibroin and Gelatin for Tissue Engineering and Flexible Biodevices.
    Brooks AK; Ramsey RG; Zhang N; Yadavalli VK
    ACS Biomater Sci Eng; 2023 Oct; 9(10):5793-5803. PubMed ID: 37698556
    [TBL] [Abstract][Full Text] [Related]  

  • 32. From Mesoscopic Functionalization of Silk Fibroin to Smart Fiber Devices for Textile Electronics and Photonics.
    Wu R; Ma L; Liu XY
    Adv Sci (Weinh); 2022 Feb; 9(4):e2103981. PubMed ID: 34802200
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomimetic Hybridization of Kevlar into Silk Fibroin: Nanofibrous Strategy for Improved Mechanic Properties of Flexible Composites and Filtration Membranes.
    Lv L; Han X; Zong L; Li M; You J; Wu X; Li C
    ACS Nano; 2017 Aug; 11(8):8178-8184. PubMed ID: 28723068
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biopatterning of Silk Proteins for Soft Micro-optics.
    Pal RK; Kurland NE; Wang C; Kundu SC; Yadavalli VK
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8809-16. PubMed ID: 25853731
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation and evaluation of a silk fibroin-polycaprolactone biodegradable biomimetic tracheal scaffold.
    Liu CS; Feng BW; He SR; Liu YM; Chen L; Chen YL; Yao ZY; Jian MQ
    J Biomed Mater Res B Appl Biomater; 2022 Jun; 110(6):1292-1305. PubMed ID: 35061311
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stretchable, Biocompatible, and Multifunctional Silk Fibroin-Based Hydrogels toward Wearable Strain/Pressure Sensors and Triboelectric Nanogenerators.
    He F; You X; Gong H; Yang Y; Bai T; Wang W; Guo W; Liu X; Ye M
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):6442-6450. PubMed ID: 31935061
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advanced Silk Fibroin Biomaterials-Based Microneedles for Healthcare.
    Lu H; Wang J; Li J; Gao B; He B
    Macromol Biosci; 2023 Nov; 23(11):e2300141. PubMed ID: 37409519
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mesoscopic-Functionalization of Silk Fibroin with Gold Nanoclusters Mediated by Keratin and Bioinspired Silk Synapse.
    Xing Y; Shi C; Zhao J; Qiu W; Lin N; Wang J; Yan XB; Yu WD; Liu XY
    Small; 2017 Oct; 13(40):. PubMed ID: 28863240
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Towards Non-stick Silk: Tuning the Hydrophobicity of Silk Fibroin Protein.
    Fountain JN; Hawker MJ; Hartle L; Wu J; Montanari V; Sahoo JK; Davis LM; Kaplan DL; Kumar K
    Chembiochem; 2022 Nov; 23(22):e202200429. PubMed ID: 35998090
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Silk fibroin-Pellethane® cardiovascular patches: Effect of silk fibroin concentration on vascular remodeling in rat model.
    Chantawong P; Tanaka T; Uemura A; Shimada K; Higuchi A; Tajiri H; Sakura K; Murakami T; Nakazawa Y; Tanaka R
    J Mater Sci Mater Med; 2017 Nov; 28(12):191. PubMed ID: 29138940
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.