These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37788682)

  • 1. Origins of Fermi Level Pinning for Ni and Ag Metal Contacts on Tungsten Dichalcogenides.
    Wang X; Hu Y; Kim SY; Addou R; Cho K; Wallace RM
    ACS Nano; 2023 Oct; 17(20):20353-20365. PubMed ID: 37788682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of Fermi Level Pinning for Metal Contacts on Molybdenum Dichalcogenide.
    Wang X; Hu Y; Kim SY; Cho K; Wallace RM
    ACS Appl Mater Interfaces; 2024 Mar; 16(10):13258-13266. PubMed ID: 38422472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interface Chemistry and Band Alignment Study of Ni and Ag Contacts on MoS
    Wang X; Kim SY; Wallace RM
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15802-15810. PubMed ID: 33764063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Chalcogen Defect Introducing Metal-Induced Gap States and Its Implications for Metal-TMDs' Interface Chemistry.
    Kumar J; Shrivastava M
    ACS Omega; 2023 Mar; 8(11):10176-10184. PubMed ID: 36969396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic properties of MoS
    K C S; Longo RC; Addou R; Wallace RM; Cho K
    Sci Rep; 2016 Sep; 6():33562. PubMed ID: 27666523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An origin of unintentional doping in transition metal dichalcogenides: the role of hydrogen impurities.
    Kang Y; Han S
    Nanoscale; 2017 Mar; 9(12):4265-4271. PubMed ID: 28294223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides.
    Kim C; Moon I; Lee D; Choi MS; Ahmed F; Nam S; Cho Y; Shin HJ; Park S; Yoo WJ
    ACS Nano; 2017 Feb; 11(2):1588-1596. PubMed ID: 28088846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge carrier injection and transport engineering in two-dimensional transition metal dichalcogenides.
    DurĂ¡n Retamal JR; Periyanagounder D; Ke JJ; Tsai ML; He JH
    Chem Sci; 2018 Oct; 9(40):7727-7745. PubMed ID: 30429982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Behavior of Schottky Barriers of 2D Transition-Metal Dichalcogenides.
    Guo Y; Liu D; Robertson J
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25709-15. PubMed ID: 26523332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conductive Atomic Force Microscopy of Semiconducting Transition Metal Dichalcogenides and Heterostructures.
    Giannazzo F; SchilirĂ² E; Greco G; Roccaforte F
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32331313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interface engineering of two-dimensional transition metal dichalcogenides towards next-generation electronic devices: recent advances and challenges.
    Liao W; Zhao S; Li F; Wang C; Ge Y; Wang H; Wang S; Zhang H
    Nanoscale Horiz; 2020 May; 5(5):787-807. PubMed ID: 32129353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-specific-power flexible transition metal dichalcogenide solar cells.
    Nassiri Nazif K; Daus A; Hong J; Lee N; Vaziri S; Kumar A; Nitta F; Chen ME; Kananian S; Islam R; Kim KH; Park JH; Poon ASY; Brongersma ML; Pop E; Saraswat KC
    Nat Commun; 2021 Dec; 12(1):7034. PubMed ID: 34887383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defect Dominated Charge Transport and Fermi Level Pinning in MoS
    Bampoulis P; van Bremen R; Yao Q; Poelsema B; Zandvliet HJW; Sotthewes K
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):19278-19286. PubMed ID: 28508628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Synthesized MoS
    Perini CJ; Basnet P; West MP; Vogel EM
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):39860-39871. PubMed ID: 30350938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. van der Waals Contact for Two-Dimensional Transition Metal Dichalcogenides.
    Ma L; Wang Y; Liu Y
    Chem Rev; 2024 Mar; 124(5):2583-2616. PubMed ID: 38427801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fermi-Level Pinning-Free WSe
    Jang J; Ra HS; Ahn J; Kim TW; Song SH; Park S; Taniguch T; Watanabe K; Lee K; Hwang DK
    Adv Mater; 2022 May; 34(19):e2109899. PubMed ID: 35306686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface.
    Park JH; Sanne A; Guo Y; Amani M; Zhang K; Movva HCP; Robinson JA; Javey A; Robertson J; Banerjee SK; Kummel AC
    Sci Adv; 2017 Oct; 3(10):e1701661. PubMed ID: 29062892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defect-Assisted Contact Property Enhancement in a Molybdenum Disulfide Monolayer.
    Chee SS; Lee JH; Lee K; Ham MH
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):4129-4134. PubMed ID: 31880145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fermi Level Pinning Dependent 2D Semiconductor Devices: Challenges and Prospects.
    Liu X; Choi MS; Hwang E; Yoo WJ; Sun J
    Adv Mater; 2022 Apr; 34(15):e2108425. PubMed ID: 34913205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface functional group modification induced partial Fermi level pinning and ohmic contact at borophene-MoS
    Zou D; Zhao W; Xie W; Xu Y; Li X; Yang C
    Phys Chem Chem Phys; 2020 Sep; 22(34):19202-19212. PubMed ID: 32812593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.