BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 3778899)

  • 1. Kinetics of glucose transport in human erythrocytes: zero-trans efflux and infinite-trans efflux at 0 degree C.
    Wheeler TJ
    Biochim Biophys Acta; 1986 Nov; 862(2):387-98. PubMed ID: 3778899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infinite-cis kinetics support the carrier model for erythrocyte glucose transport.
    Wheeler TJ; Whelan JD
    Biochemistry; 1988 Mar; 27(5):1441-50. PubMed ID: 3365399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation energy of the slowest step in the glucose carrier cycle: break at 23 degrees C and correlation with membrane lipid fluidity.
    Whitesell RR; Regen DM; Beth AH; Pelletier DK; Abumrad NA
    Biochemistry; 1989 Jun; 28(13):5618-25. PubMed ID: 2775725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Re-examination of hexose exchanges using rat erythrocytes: evidence inconsistent with a one-site sequential exchange model, but consistent with a two-site simultaneous exchange model.
    Naftalin RJ; Rist RJ
    Biochim Biophys Acta; 1994 Apr; 1191(1):65-78. PubMed ID: 8155685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of nucleoside transport in human erythrocytes. Alterations during blood preservation.
    Plagemann PG; Wohlhueter RM
    Biochim Biophys Acta; 1984 Nov; 778(1):176-84. PubMed ID: 6498185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anomalous asymmetric kinetics of human red cell hexose transfer: role of cytosolic adenosine 5'-triphosphate.
    Carruthers A
    Biochemistry; 1986 Jun; 25(12):3592-602. PubMed ID: 3718945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Galactose transport in human erythrocytes. The transport mechanism is resolved into two simple asymmetric antiparallel carriers.
    Ginsburg H
    Biochim Biophys Acta; 1978 Jan; 506(1):119-35. PubMed ID: 620020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence of multiple operational affinities for D-glucose inside the human erythrocyte membrane.
    Baker GF; Naftalin RJ
    Biochim Biophys Acta; 1979 Feb; 550(3):474-84. PubMed ID: 420829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Net sugar transport is a multistep process. Evidence for cytosolic sugar binding sites in erythrocytes.
    Cloherty EK; Sultzman LA; Zottola RJ; Carruthers A
    Biochemistry; 1995 Nov; 34(47):15395-406. PubMed ID: 7492539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GLUT-1 mediation of rapid glucose transport in dolphin (Tursiops truncatus) red blood cells.
    Craik JD; Young JD; Cheeseman CI
    Am J Physiol; 1998 Jan; 274(1):R112-9. PubMed ID: 9458906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The human erythrocyte ghost: a new experimental model for studying adenosine transport.
    Fernandez-Rivera-Rio L; Gonzalez-Garcia MR
    Arch Biochem Biophys; 1985 Jul; 240(1):246-56. PubMed ID: 4015103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric or symmetric? Cytosolic modulation of human erythrocyte hexose transfer.
    Carruthers A; Melchior DL
    Biochim Biophys Acta; 1983 Feb; 728(2):254-66. PubMed ID: 6681982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pre-steady-state uptake of D-glucose by the human erythrocyte is inconsistent with a circulating carrier mechanism.
    Naftalin RJ
    Biochim Biophys Acta; 1988 Dec; 946(2):431-8. PubMed ID: 3207758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic properties of the reconstituted glucose transporter from human erythrocytes.
    Wheeler TJ; Hinkle PC
    J Biol Chem; 1981 Sep; 256(17):8907-14. PubMed ID: 6455434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zero-trans and equilibrium-exchange efflux and infinite-trans uptake of galactose by human erythrocytes.
    Ginsburg H; Ram D
    Biochim Biophys Acta; 1975 Mar; 382(3):369-76. PubMed ID: 1125239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetrical binding of phloretin to the glucose transport system of human erythrocytes.
    Krupka RM
    J Membr Biol; 1985; 83(1-2):71-80. PubMed ID: 4039758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of insulin receptor down-regulation on hexose transport in human erythrocytes.
    Dustin ML; Jacobson GR; Peterson SW
    J Biol Chem; 1984 Nov; 259(22):13660-3. PubMed ID: 6389533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. L-Leucine transport in human red blood cells: a detailed kinetic analysis.
    Rosenberg R
    J Membr Biol; 1981; 62(1-2):79-93. PubMed ID: 7277478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A kinetic analysis of L-tryptophan transport in human red blood cells.
    Rosenberg R
    Biochim Biophys Acta; 1981 Dec; 649(2):262-8. PubMed ID: 7317397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunological evidence that band 3 is the major glucose transporter of the human erythrocyte membrane.
    Langdon RG; Holman VP
    Biochim Biophys Acta; 1988 Nov; 945(1):23-32. PubMed ID: 3179308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.