These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37788995)

  • 21. KAMPNet: multi-source medical knowledge augmented medication prediction network with multi-level graph contrastive learning.
    An Y; Tang H; Jin B; Xu Y; Wei X
    BMC Med Inform Decis Mak; 2023 Oct; 23(1):243. PubMed ID: 37904198
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MARS: a motif-based autoregressive model for retrosynthesis prediction.
    Liu J; Yan C; Yu Y; Lu C; Huang J; Ou-Yang L; Zhao P
    Bioinformatics; 2024 Mar; 40(3):. PubMed ID: 38426338
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neural-Symbolic Machine Learning for Retrosynthesis and Reaction Prediction.
    Segler MHS; Waller MP
    Chemistry; 2017 May; 23(25):5966-5971. PubMed ID: 28134452
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Valid, Plausible, and Diverse Retrosynthesis Using Tied Two-Way Transformers with Latent Variables.
    Kim E; Lee D; Kwon Y; Park MS; Choi YS
    J Chem Inf Model; 2021 Jan; 61(1):123-133. PubMed ID: 33410697
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Harnessing Data Augmentation and Normalization Preprocessing to Improve the Performance of Chemical Reaction Predictions of Data-Driven Model.
    Zhang B; Lin J; Du L; Zhang L
    Polymers (Basel); 2023 May; 15(9):. PubMed ID: 37177370
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multi-task prediction-based graph contrastive learning for inferring the relationship among lncRNAs, miRNAs and diseases.
    Sheng N; Wang Y; Huang L; Gao L; Cao Y; Xie X; Fu Y
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37529914
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RetroComposer: Composing Templates for Template-Based Retrosynthesis Prediction.
    Yan C; Zhao P; Lu C; Yu Y; Huang J
    Biomolecules; 2022 Sep; 12(9):. PubMed ID: 36139164
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DRPreter: Interpretable Anticancer Drug Response Prediction Using Knowledge-Guided Graph Neural Networks and Transformer.
    Shin J; Piao Y; Bang D; Kim S; Jo K
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430395
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Do Chemformers Dream of Organic Matter? Evaluating a Transformer Model for Multistep Retrosynthesis.
    Westerlund AM; Manohar Koki S; Kancharla S; Tibo A; Saigiridharan L; Kabeshov M; Mercado R; Genheden S
    J Chem Inf Model; 2024 Apr; 64(8):3021-3033. PubMed ID: 38602390
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GeoT: A Geometry-Aware Transformer for Reliable Molecular Property Prediction and Chemically Interpretable Representation Learning.
    Kwak B; Park J; Kang T; Jo J; Lee B; Yoon S
    ACS Omega; 2023 Oct; 8(42):39759-39769. PubMed ID: 37901490
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CMMS-GCL: cross-modality metabolic stability prediction with graph contrastive learning.
    Du BX; Long Y; Li X; Wu M; Shi JY
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37572298
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving the performance of models for one-step retrosynthesis through re-ranking.
    Lin MH; Tu Z; Coley CW
    J Cheminform; 2022 Mar; 14(1):15. PubMed ID: 35292121
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Challenging Complexity with Simplicity: Rethinking the Role of Single-Step Models in Computer-Aided Synthesis Planning.
    Li J; Lin K; Pei J; Lai L
    J Chem Inf Model; 2024 Jul; 64(14):5470-5479. PubMed ID: 38940765
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-step retrosynthesis prediction by leveraging commonly preserved substructures.
    Fang L; Li J; Zhao M; Tan L; Lou JG
    Nat Commun; 2023 Apr; 14(1):2446. PubMed ID: 37117216
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interpretable machine learning models for hospital readmission prediction: a two-step extracted regression tree approach.
    Gao X; Alam S; Shi P; Dexter F; Kong N
    BMC Med Inform Decis Mak; 2023 Jun; 23(1):104. PubMed ID: 37277767
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MolFPG: Multi-level fingerprint-based Graph Transformer for accurate and robust drug toxicity prediction.
    Teng S; Yin C; Wang Y; Chen X; Yan Z; Cui L; Wei L
    Comput Biol Med; 2023 Sep; 164():106904. PubMed ID: 37453376
    [TBL] [Abstract][Full Text] [Related]  

  • 37. From theory to experiment: transformer-based generation enables rapid discovery of novel reactions.
    Wang X; Yao C; Zhang Y; Yu J; Qiao H; Zhang C; Wu Y; Bai R; Duan H
    J Cheminform; 2022 Sep; 14(1):60. PubMed ID: 36056425
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-supervised learning with chemistry-aware fragmentation for effective molecular property prediction.
    Xie A; Zhang Z; Guan J; Zhou S
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37598424
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Permutation Invariant Graph-to-Sequence Model for Template-Free Retrosynthesis and Reaction Prediction.
    Tu Z; Coley CW
    J Chem Inf Model; 2022 Aug; 62(15):3503-3513. PubMed ID: 35881916
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Graph Neural Tree: A novel and interpretable deep learning-based framework for accurate molecular property predictions.
    Zhan H; Zhu X; Qiao Z; Hu J
    Anal Chim Acta; 2023 Mar; 1244():340558. PubMed ID: 36737143
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.