These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 3778910)

  • 1. A contribution of calmodulin to cellular deformability of calcium-loaded human erythrocytes.
    Murakami J; Maeda N; Kon K; Shiga T
    Biochim Biophys Acta; 1986 Dec; 863(1):23-32. PubMed ID: 3778910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Changes of erythrocyte deformability induced by calcium accumulation and calmodulin inhibitors].
    Murakami J
    Nihon Seirigaku Zasshi; 1987; 49(4):119-33. PubMed ID: 3625566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separate mechanisms of deformability loss in ATP-depleted and Ca-loaded erythrocytes.
    Clark MR; Mohandas N; Feo C; Jacobs MS; Shohet SB
    J Clin Invest; 1981 Feb; 67(2):531-9. PubMed ID: 6780609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell age-dependent changes in deformability and calcium accumulation of human erythrocytes.
    Shiga T; Sekiya M; Maeda N; Kon K; Okazaki M
    Biochim Biophys Acta; 1985 Apr; 814(2):289-99. PubMed ID: 3919766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors that limit whole cell deformability in erythrocytes after calcium loading and ATP depletion.
    Mohandas N; Clark MR; Feo C; Jacobs MS; Shohet SB
    Prog Clin Biol Res; 1981; 55():423-37. PubMed ID: 6794036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic dependence of red cell deformability.
    Weed RI; LaCelle PL; Merrill EW
    J Clin Invest; 1969 May; 48(5):795-809. PubMed ID: 4388591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retention of water and potassium by erythrocytes prevents calcium-induced membrane rigidity.
    Dreher KL; Eaton JW; Kuettner JF; Breslawec KP; Blackshear PL; White JG
    Am J Pathol; 1978 Jul; 92(1):215-25. PubMed ID: 356623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calpain-1 knockout reveals broad effects on erythrocyte deformability and physiology.
    Wieschhaus A; Khan A; Zaidi A; Rogalin H; Hanada T; Liu F; De Franceschi L; Brugnara C; Rivera A; Chishti AH
    Biochem J; 2012 Nov; 448(1):141-52. PubMed ID: 22870887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of calcium and A23187 on deformability and volume of human red blood cells.
    Dodson RA; Hinds TR; Vincenzi FF
    Blood Cells; 1987; 12(3):555-64. PubMed ID: 3115342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of erythrocyte shape by calmodulin.
    Nelson GA; Andrews ML; Karnovsky MJ
    J Cell Biol; 1983 Mar; 96(3):730-5. PubMed ID: 6833381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diminished spectrin extraction from ATP-depleted human erythrocytes. Evidence relating spectrin to changes in erythrocyte shape and deformability.
    Lux SE; John KM; Ukena TE
    J Clin Invest; 1978 Mar; 61(3):815-27. PubMed ID: 25286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of intracellular organic phosphates on erythrocyte deformability].
    Suzuki Y
    Nihon Seirigaku Zasshi; 1990; 52(2):36-46. PubMed ID: 2332835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical factors influencing erythrocyte deformability and capillary entrance phenomena.
    La Celle PL; Smith BD
    Scand J Clin Lab Invest Suppl; 1981; 156():145-9. PubMed ID: 6948376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the role of diacyglycerol in calcium-induced erythrocyte shape change and rigidity.
    Burris SM; Eaton JW; White JG
    J Lab Clin Med; 1980 Oct; 96(4):749-56. PubMed ID: 6775033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of procaine HCLl on ATP: calcium-dependent alterations in red cell shape and deformability.
    Palek J; Liu A; Liu D; Snyder LM; Fortier NL; Njoku G; Kiernan F; Funk D; Crusberg T
    Blood; 1977 Jul; 50(1):155-64. PubMed ID: 326314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical, biophysical and haemorheological effects of dimethylsulphoxide on human erythrocyte calcium loading.
    Santos NC; Figueira-Coelho J; Saldanha C; Martins-Silva J
    Cell Calcium; 2002 Apr; 31(4):183-8. PubMed ID: 12027383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of red cell membrane deformability and stability by skeletal protein network.
    Takakuwa Y; Ishibashi T; Mohandas N
    Biorheology; 1990; 27(3-4):357-65. PubMed ID: 2261502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of 2,3-diphosphoglycerate on the deformability of human erythrocytes.
    Suzuki Y; Nakajima T; Shiga T; Maeda N
    Biochim Biophys Acta; 1990 Nov; 1029(1):85-90. PubMed ID: 2223815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical and geometrical properties of density-separated neonatal and adult erythrocytes.
    Linderkamp O; Friederichs E; Meiselman HJ
    Pediatr Res; 1993 Nov; 34(5):688-93. PubMed ID: 8284111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Does calmodulin participate in the regulation of the Ca-pump of erythrocytes in vivo?].
    Pokudin NI; Petruniaka VV; Orlov SN
    Biokhimiia; 1988 May; 53(5):753-7. PubMed ID: 2971399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.