These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 37789153)
21. Beneficial effect of Cu on Ti-Nb-Ta-Zr sputtered uniform/adhesive gum films accelerating bacterial inactivation under indoor visible light. Alhussein A; Achache S; Deturche R; Sanchette F; Pulgarin C; Kiwi J; Rtimi S Colloids Surf B Biointerfaces; 2017 Apr; 152():152-158. PubMed ID: 28107706 [TBL] [Abstract][Full Text] [Related]
22. Morphological, mechanical and antibacterial properties of Ti-Cu-N thin films deposited by sputtering DC. Aziz I; Mulyani E; Yusuf Y Heliyon; 2023 Jun; 9(6):e17170. PubMed ID: 37484339 [TBL] [Abstract][Full Text] [Related]
24. N-halamine-based multilayers on titanium substrates for antibacterial application. Tao B; Shen X; Yuan Z; Ran Q; Shen T; Pei Y; Liu J; He Y; Hu Y; Cai K Colloids Surf B Biointerfaces; 2018 Oct; 170():382-392. PubMed ID: 29945050 [TBL] [Abstract][Full Text] [Related]
25. Antibacterial and Biocompatible Titanium-Copper Oxide Coating May Be a Potential Strategy to Reduce Periprosthetic Infection: An In Vitro Study. Norambuena GA; Patel R; Karau M; Wyles CC; Jannetto PJ; Bennet KE; Hanssen AD; Sierra RJ Clin Orthop Relat Res; 2017 Mar; 475(3):722-732. PubMed ID: 26847453 [TBL] [Abstract][Full Text] [Related]
27. Enhanced Physicochemical and Biological Properties of a Low-Temperature Copperized Layer on Gradient Nanograined Pure Titanium. Qiu J; Pan T; Peng M; Chen M; Xu J; Wang J; Wan Y; Hu J ACS Appl Bio Mater; 2021 Apr; 4(4):3524-3531. PubMed ID: 35014437 [TBL] [Abstract][Full Text] [Related]
28. Study on antibacterial alginate-stabilized copper nanoparticles by FT-IR and 2D-IR correlation spectroscopy. Díaz-Visurraga J; Daza C; Pozo C; Becerra A; von Plessing C; García A Int J Nanomedicine; 2012; 7():3597-612. PubMed ID: 22848180 [TBL] [Abstract][Full Text] [Related]
29. Surface functionalization of titanium substrates with cecropin B to improve their cytocompatibility and reduce inflammation responses. Xu D; Yang W; Hu Y; Luo Z; Li J; Hou Y; Liu Y; Cai K Colloids Surf B Biointerfaces; 2013 Oct; 110():225-35. PubMed ID: 23732798 [TBL] [Abstract][Full Text] [Related]
30. Tailoring of antibacterial Ag nanostructures on TiO2 nanotube layers by magnetron sputtering. Uhm SH; Song DH; Kwon JS; Lee SB; Han JG; Kim KN J Biomed Mater Res B Appl Biomater; 2014 Apr; 102(3):592-603. PubMed ID: 24123999 [TBL] [Abstract][Full Text] [Related]
31. Antibacterial effect of TiO Ivanova IA; Pavlova EL; Stoyanova DS; Angelov OI J Basic Microbiol; 2019 Dec; 59(12):1165-1172. PubMed ID: 31617946 [TBL] [Abstract][Full Text] [Related]
32. Surface immobilization of heparin and chitosan on titanium to improve hemocompatibility and antibacterial activities. Zhang X; Zhang G; Zhang H; Li J; Yao X; Tang B Colloids Surf B Biointerfaces; 2018 Dec; 172():338-345. PubMed ID: 30179803 [TBL] [Abstract][Full Text] [Related]
33. Antibacterial copper-nickel bilayers and multilayer coatings by pulsed laser deposition on titanium. Vishwakarma V; Josephine J; George RP; Krishnan R; Dash S; Kamruddin M; Kalavathi S; Manoharan N; Tyagi AK; Dayal RK Biofouling; 2009 Nov; 25(8):705-10. PubMed ID: 20183129 [TBL] [Abstract][Full Text] [Related]
34. Bactericidal activity of the Ti-13Nb-13Zr alloy against different species of bacteria related with implant infection. Aguilera-Correa JJ; Conde A; Arenas MA; de-Damborenea JJ; Marin M; Doadrio AL; Esteban J Biomed Mater; 2017 Aug; 12(4):045022. PubMed ID: 28799523 [TBL] [Abstract][Full Text] [Related]
35. Evaluation of antibacterial, angiogenic, and osteogenic activities of green synthesized gap-bridging copper-doped nanocomposite coatings. Huang D; Ma K; Cai X; Yang X; Hu Y; Huang P; Wang F; Jiang T; Wang Y Int J Nanomedicine; 2017; 12():7483-7500. PubMed ID: 29066895 [TBL] [Abstract][Full Text] [Related]
36. Effect of (Ag, Zn) co-doping on structural, optical and bactericidal properties of CuO nanoparticles synthesized by a microwave-assisted method. Thakur N; Anu ; Kumar K; Kumar A Dalton Trans; 2021 May; 50(18):6188-6203. PubMed ID: 33871499 [TBL] [Abstract][Full Text] [Related]
37. Nanosilver/poly (dl-lactic-co-glycolic acid) on titanium implant surfaces for the enhancement of antibacterial properties and osteoinductivity. Zeng X; Xiong S; Zhuo S; Liu C; Miao J; Liu D; Wang H; Zhang Y; Wang C; Liu Y Int J Nanomedicine; 2019; 14():1849-1863. PubMed ID: 30880984 [TBL] [Abstract][Full Text] [Related]
38. Enhancing antibacterial property of porous titanium surfaces with silver nanoparticles coatings via electron-beam evaporation. Zhang X; Li Y; Luo X; Ding Y J Mater Sci Mater Med; 2022 Jun; 33(7):57. PubMed ID: 35737197 [TBL] [Abstract][Full Text] [Related]
39. Electropolymerization of Pyrrole-Tailed Imidazolium Ionic Liquid for the Elaboration of Antibacterial Surfaces. Halima HB; Zwingelstein T; Humblot V; Lakard B; Viau L ACS Appl Mater Interfaces; 2023 Jul; 15(28):33382-33396. PubMed ID: 37421359 [TBL] [Abstract][Full Text] [Related]
40. Self-defending additively manufactured bone implants bearing silver and copper nanoparticles. van Hengel IAJ; Tierolf MWAM; Valerio VPM; Minneboo M; Fluit AC; Fratila-Apachitei LE; Apachitei I; Zadpoor AA J Mater Chem B; 2020 Feb; 8(8):1589-1602. PubMed ID: 31848564 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]