These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 37789269)
1. Mechanisms of metabolic adaptation in the duckweed Lemna gibba: an integrated metabolic, transcriptomic and flux analysis. Shi H; Ernst E; Heinzel N; McCorkle S; Rolletschek H; Borisjuk L; Ortleb S; Martienssen R; Shanklin J; Schwender J BMC Plant Biol; 2023 Oct; 23(1):458. PubMed ID: 37789269 [TBL] [Abstract][Full Text] [Related]
2. Survey of the total fatty acid and triacylglycerol composition and content of 30 duckweed species and cloning of a Δ6-desaturase responsible for the production of γ-linolenic and stearidonic acids in Lemna gibba. Yan Y; Candreva J; Shi H; Ernst E; Martienssen R; Schwender J; Shanklin J BMC Plant Biol; 2013 Dec; 13():201. PubMed ID: 24308551 [TBL] [Abstract][Full Text] [Related]
3. Transcriptional analysis reveals potential genes and regulatory networks involved in salicylic acid-induced flowering in duckweed (Lemna gibba). Fu L; Tan D; Sun X; Ding Z; Zhang J Plant Physiol Biochem; 2020 Oct; 155():512-522. PubMed ID: 32836197 [TBL] [Abstract][Full Text] [Related]
4. Investigation of biomass production, crude protein and starch content in laboratory wastewater treatment systems planted with Iatrou EI; Kora E; Stasinakis AS Environ Technol; 2019 Aug; 40(20):2649-2656. PubMed ID: 29502496 [TBL] [Abstract][Full Text] [Related]
5. Extensive post-transcriptional regulation revealed by integrative transcriptome and proteome analyses in salicylic acid-induced flowering in duckweed ( Fu L; Tan D; Sun X; Ding Z; Zhang J Front Plant Sci; 2024; 15():1331949. PubMed ID: 38390296 [TBL] [Abstract][Full Text] [Related]
6. Flowering and Seed Production across the Lemnaceae. Fourounjian P; Slovin J; Messing J Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33800476 [TBL] [Abstract][Full Text] [Related]
7. Comprehensive evaluation of nitrogen removal rate and biomass, ethanol, and methane production yields by combination of four major duckweeds and three types of wastewater effluent. Toyama T; Hanaoka T; Tanaka Y; Morikawa M; Mori K Bioresour Technol; 2018 Feb; 250():464-473. PubMed ID: 29197273 [TBL] [Abstract][Full Text] [Related]
8. Bio-accumulation and toxicity of lead (Pb) in Lemna gibba L (duckweed). Sobrino AS; Miranda MG; Alvarez C; Quiroz A J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(1):107-10. PubMed ID: 20390849 [TBL] [Abstract][Full Text] [Related]
9. Toxicity assessment of boron (B) by Lemna minor L. and Lemna gibba L. and their possible use as model plants for ecological risk assessment of aquatic ecosystems with boron pollution. Gür N; Türker OC; Böcük H Chemosphere; 2016 Aug; 157():1-9. PubMed ID: 27192627 [TBL] [Abstract][Full Text] [Related]
10. Performance of Lemna gibba bioreactor for nitrogen and phosphorus retention, and biomass production in Mediterranean climate. Ennabili A; Ezzahri J; Radoux M J Environ Manage; 2019 Dec; 252():109627. PubMed ID: 31586747 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the cryptic interspecific hybrid Lemna×mediterranea by an integrated approach provides new insights into duckweed diversity. Braglia L; Ceschin S; Iannelli MA; Bog M; Fabriani M; Frugis G; Gavazzi F; Gianì S; Mariani F; Muzzi M; Pelella E; Morello L J Exp Bot; 2024 May; 75(10):3092-3110. PubMed ID: 38387000 [TBL] [Abstract][Full Text] [Related]
12. Test system stability and natural variability of a Lemna gibba L. bioassay. Scherr C; Simon M; Spranger J; Baumgartner S PLoS One; 2008 Sep; 3(9):e3133. PubMed ID: 18769541 [TBL] [Abstract][Full Text] [Related]
13. De novo assembly, transcriptome characterization, and simple sequence repeat marker development in duckweed Fu L; Ding Z; Kumpeangkeaw A; Tan D; Han B; Sun X; Zhang J Physiol Mol Biol Plants; 2020 Jan; 26(1):133-142. PubMed ID: 32158126 [No Abstract] [Full Text] [Related]
14. Limitations of growth-parameters in Lemna gibba bioassays for arsenic and uranium under variable phosphate availability. Mkandawire M; Taubert B; Dudel EG Ecotoxicol Environ Saf; 2006 Sep; 65(1):118-28. PubMed ID: 16029890 [TBL] [Abstract][Full Text] [Related]
16. Integrated analysis of transcriptome and metabolites reveals an essential role of metabolic flux in starch accumulation under nitrogen starvation in duckweed. Yu C; Zhao X; Qi G; Bai Z; Wang Y; Wang S; Ma Y; Liu Q; Hu R; Zhou G Biotechnol Biofuels; 2017; 10():167. PubMed ID: 28670341 [TBL] [Abstract][Full Text] [Related]
17. Growth Recovery of Lemna gibba and Lemna minor Following a 7-Day Exposure to the Herbicide Diuron. Burns M; Hanson ML; Prosser RS; Crossan AN; Kennedy IR Bull Environ Contam Toxicol; 2015 Aug; 95(2):150-6. PubMed ID: 26067703 [TBL] [Abstract][Full Text] [Related]
19. Bioaccumulation and toxicity assessment of irrigation water contaminated with boron (B) using duckweed (Lemna gibba L.) in a batch reactor system. Türker OC; Yakar A; Gür N J Hazard Mater; 2017 Feb; 324(Pt B):151-159. PubMed ID: 27780623 [TBL] [Abstract][Full Text] [Related]
20. Parallel determination of enzyme activities and in vivo fluxes in Brassica napus embryos grown on organic or inorganic nitrogen source. Junker BH; Lonien J; Heady LE; Rogers A; Schwender J Phytochemistry; 2007; 68(16-18):2232-42. PubMed ID: 17509628 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]