BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 3778949)

  • 1. N-(6-phenylhexyl)-5-chloro-1-naphthalenesulfonamide is one of a new class of activators for Ca2+-activated, phospholipid-dependent protein kinase.
    Nishino H; Kitagawa K; Iwashima A; Ito M; Tanaka T; Hidaka H
    Biochim Biophys Acta; 1986 Nov; 889(2):236-9. PubMed ID: 3778949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-(6-phenylhexyl)-5-chloro-1-naphthalenesulfonamide, a novel activator of protein kinase C.
    Ito M; Tanaka T; Inagaki M; Nakanishi K; Hidaka H
    Biochemistry; 1986 Jul; 25(15):4179-84. PubMed ID: 3756133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of protein kinase C activation and Ca2+ mobilization on hexose transport in Swiss 3T3 cells.
    Kitagawa K; Nishino H; Iwashima A
    Biochim Biophys Acta; 1986 Jun; 887(1):100-4. PubMed ID: 3085730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two types of calcium-dependent protein phosphorylations modulated by calmodulin antagonists. Naphthalenesulfonamide derivatives.
    Tanaka T; Ohmura T; Yamakado T; Hidaka H
    Mol Pharmacol; 1982 Sep; 22(2):408-12. PubMed ID: 6897280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide(W-7), a calmodulin antagonist, also inhibits phospholipid-sensitive calcium-dependent protein kinase.
    Schatzman RC; Raynor RL; Kuo JF
    Biochim Biophys Acta; 1983 Jan; 755(1):144-7. PubMed ID: 6297609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of protein kinase C to N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide through its ATP binding site.
    O'Brian CA; Ward NE
    Biochem Pharmacol; 1989 Jun; 38(11):1737-42. PubMed ID: 2735931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium stimulates glucose transport in skeletal muscle by a pathway independent of contraction.
    Youn JH; Gulve EA; Holloszy JO
    Am J Physiol; 1991 Mar; 260(3 Pt 1):C555-61. PubMed ID: 2003578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca2+- and phospholipid-independent activation of protein kinase C by selective oxidative modification of the regulatory domain.
    Gopalakrishna R; Anderson WB
    Proc Natl Acad Sci U S A; 1989 Sep; 86(17):6758-62. PubMed ID: 2505261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential control of the functional cell surface expression and content of hexose transporter GLUT-1 by glucose and glucose metabolism in murine fibroblasts.
    Ortiz PA; Haspel HC
    Biochem J; 1993 Oct; 295 ( Pt 1)(Pt 1):67-72. PubMed ID: 8216241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca2+-dependent translocation of hexose carrier in mouse fibroblast Swiss 3T3 cells.
    Kitagawa K
    Biochim Biophys Acta; 1987 May; 928(3):272-81. PubMed ID: 3105598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein kinase C activators selectively inhibit insulin-stimulated system A transport activity in skeletal muscle at a post-receptor level.
    Gumà A; Camps M; Palacín M; Testar X; Zorzano A
    Biochem J; 1990 Jun; 268(3):633-9. PubMed ID: 2194449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-fat feeding impairs insulin-stimulated GLUT4 recruitment via an early insulin-signaling defect.
    Zierath JR; Houseknecht KL; Gnudi L; Kahn BB
    Diabetes; 1997 Feb; 46(2):215-23. PubMed ID: 9000697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppressed intrinsic catalytic activity of GLUT1 glucose transporters in insulin-sensitive 3T3-L1 adipocytes.
    Harrison SA; Buxton JM; Czech MP
    Proc Natl Acad Sci U S A; 1991 Sep; 88(17):7839-43. PubMed ID: 1881918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between effects of W-7, insulin, and hypoxia on glucose transport in skeletal muscle.
    Youn JH; Gulve EA; Henriksen EJ; Holloszy JO
    Am J Physiol; 1994 Oct; 267(4 Pt 2):R888-94. PubMed ID: 7943429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternate models for shared carriers or a single maturing carrier in hexose uptake into rabbit jejunum in vitro.
    Thomson AB; Gardner ML; Atkins GL
    Biochim Biophys Acta; 1987 Sep; 903(1):229-40. PubMed ID: 3651454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute regulation of glucose transport in a monocyte-macrophage cell line: Glut-3 affinity for glucose is enhanced during the respiratory burst.
    Ahmed N; Kansara M; Berridge MV
    Biochem J; 1997 Oct; 327 ( Pt 2)(Pt 2):369-75. PubMed ID: 9359403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of tunicamycin on hexose transport in mouse embryo fibroblast Swiss 3T3 cells.
    Kitagawa K; Nishino H; Iwashima A
    Biochim Biophys Acta; 1985 Nov; 821(1):67-71. PubMed ID: 4063363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced epidermal ornithine decarboxylase activity and tumor promotion by N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) in mouse skin.
    Nakadate T; Yamamoto S; Aizu E; Kato R
    Pharmacology; 1986; 32(3):167-75. PubMed ID: 3083437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of endotoxin-induced monokines on glucose metabolism in the muscle cell line L6.
    Lee MD; Zentella A; Vine W; Pekala PH; Cerami A
    Proc Natl Acad Sci U S A; 1987 May; 84(9):2590-4. PubMed ID: 3472226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of diltiazem on skeletal muscle 3-O-methylglucose transport in bacteremic rats.
    Westfall MV; Sayeed MM
    Am J Physiol; 1989 Mar; 256(3 Pt 2):R716-21. PubMed ID: 2646956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.