These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37789502)

  • 21. Quantitative Deformability Cytometry: Rapid, Calibrated Measurements of Cell Mechanical Properties.
    Nyberg KD; Hu KH; Kleinman SH; Khismatullin DB; Butte MJ; Rowat AC
    Biophys J; 2017 Oct; 113(7):1574-1584. PubMed ID: 28978449
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single stream inertial focusing in a straight microchannel.
    Wang X; Zandi M; Ho CC; Kaval N; Papautsky I
    Lab Chip; 2015 Apr; 15(8):1812-21. PubMed ID: 25761900
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-throughput concentration of rare malignant tumor cells from large-volume effusions by multistage inertial microfluidics.
    Xiang N; Ni Z
    Lab Chip; 2022 Feb; 22(4):757-767. PubMed ID: 35050294
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biophysical phenotyping of single cells using a differential multiconstriction microfluidic device with self-aligned 3D electrodes.
    Yang D; Zhou Y; Zhou Y; Han J; Ai Y
    Biosens Bioelectron; 2019 May; 133():16-23. PubMed ID: 30903937
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfluidic Analysis for Separating and Measuring the Deformability of Cancer Cell Subpopulations.
    Chang YN; Liang Y; Gu W; Wang J; Qin Y; Chen K; Li J; Bai X; Zhang J; Xing G
    ACS Omega; 2019 May; 4(5):8318-8323. PubMed ID: 31459919
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single-Cell Stretching in Viscoelastic Fluids with Electronically Triggered Imaging for Cellular Mechanical Phenotyping.
    Liang M; Yang D; Zhou Y; Li P; Zhong J; Ai Y
    Anal Chem; 2021 Mar; 93(10):4567-4575. PubMed ID: 33661609
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Image-based cell sorting using focused travelling surface acoustic waves.
    Nawaz AA; Soteriou D; Xu CK; Goswami R; Herbig M; Guck J; Girardo S
    Lab Chip; 2023 Jan; 23(2):372-387. PubMed ID: 36620943
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-Throughput Separation and Enrichment of Rare Malignant Tumor Cells from Large-Volume Effusions by Inertial Microfluidics.
    Ni C; Zhu Z; Zhou Z; Xiang N
    Methods Mol Biol; 2023; 2679():193-206. PubMed ID: 37300617
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integrated Microfluidic Handheld Cell Sorter for High-Throughput Label-Free Malignant Tumor Cell Sorting.
    Jiang F; Xiang N
    Anal Chem; 2022 Jan; 94(3):1859-1866. PubMed ID: 35020366
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extracting Cell Stiffness from Real-Time Deformability Cytometry: Theory and Experiment.
    Mietke A; Otto O; Girardo S; Rosendahl P; Taubenberger A; Golfier S; Ulbricht E; Aland S; Guck J; Fischer-Friedrich E
    Biophys J; 2015 Nov; 109(10):2023-36. PubMed ID: 26588562
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inertial microfluidics for high-throughput cell analysis and detection: a review.
    Zhou Z; Chen Y; Zhu S; Liu L; Ni Z; Xiang N
    Analyst; 2021 Oct; 146(20):6064-6083. PubMed ID: 34490431
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Triplet Parallelizing Spiral Microfluidic Chip for Continuous Separation of Tumor Cells.
    Chen H
    Sci Rep; 2018 Mar; 8(1):4042. PubMed ID: 29511230
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A high-throughput microfluidic device inspired by the Wheatstone bridge principle for characterizing the mechanical properties of single cells.
    Hu S; Liu T; Xue C; Li Y; Yang Y; Xu X; Liu B; Chen X; Zhao Y; Qin K
    Anal Methods; 2022 Dec; 14(46):4813-4821. PubMed ID: 36382629
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On-chip refractive index cytometry for whole-cell deformability discrimination.
    Leblanc-Hotte A; Sen Nkwe N; Chabot-Roy G; Affar EB; Lesage S; Delisle JS; Peter YA
    Lab Chip; 2019 Jan; 19(3):464-474. PubMed ID: 30570636
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low-cost multi-core inertial microfluidic centrifuge for high-throughput cell concentration.
    Xiang N; Li Q; Shi Z; Zhou C; Jiang F; Han Y; Ni Z
    Electrophoresis; 2020 Jun; 41(10-11):875-882. PubMed ID: 31705675
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [High throughput detection and characterization of red blood cells deformability by combining optical tweezers with microfluidic technique].
    Zhang M; Meng X; Zhu L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Oct; 37(5):848-854. PubMed ID: 33140609
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Real-Time Deformability Cytometry: Label-Free Functional Characterization of Cells.
    Herbig M; Kräter M; Plak K; Müller P; Guck J; Otto O
    Methods Mol Biol; 2018; 1678():347-369. PubMed ID: 29071686
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A deformability-based biochip for precise label-free stratification of metastatic subtypes using deep learning.
    Hua H; Zou S; Ma Z; Guo W; Fong CY; Khoo BL
    Microsyst Nanoeng; 2023; 9():120. PubMed ID: 37780810
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-throughput and label-free enrichment of malignant tumor cells and clusters from pleural and peritoneal effusions using inertial microfluidics.
    Zhu Z; Li S; Wu D; Ren H; Ni C; Wang C; Xiang N; Ni Z
    Lab Chip; 2022 May; 22(11):2097-2106. PubMed ID: 35441644
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controllable Size-Independent Three-Dimensional Inertial Focusing in High-Aspect-Ratio Asymmetric Serpentine Microchannels.
    Ni C; Zhou Z; Zhu Z; Jiang D; Xiang N
    Anal Chem; 2022 Nov; 94(45):15639-15647. PubMed ID: 36315448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.