These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37789502)

  • 41. Application of level-set method in simulation of normal and cancer cells deformability within a microfluidic device.
    Mirzaaghaian A; Ramiar A; Ranjbar AA; Warkiani ME
    J Biomech; 2020 Nov; 112():110066. PubMed ID: 33069965
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Extensional-Flow Impedance Cytometer for Contactless and Optics-Free Erythrocyte Deformability Analysis.
    Reale R; De Ninno A; Nepi T; Bisegna P; Caselli F
    IEEE Trans Biomed Eng; 2023 Feb; 70(2):565-572. PubMed ID: 35939464
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-throughput rare cell separation from blood samples using steric hindrance and inertial microfluidics.
    Shen S; Ma C; Zhao L; Wang Y; Wang JC; Xu J; Li T; Pang L; Wang J
    Lab Chip; 2014 Jul; 14(14):2525-38. PubMed ID: 24862501
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Numerical Simulation of Real-Time Deformability Cytometry To Extract Cell Mechanical Properties.
    Mokbel M; Mokbel D; Mietke A; Träber N; Girardo S; Otto O; Guck J; Aland S
    ACS Biomater Sci Eng; 2017 Nov; 3(11):2962-2973. PubMed ID: 33418716
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inertial microfluidics in parallel channels for high-throughput applications.
    Hansson J; Karlsson JM; Haraldsson T; Brismar H; van der Wijngaart W; Russom A
    Lab Chip; 2012 Nov; 12(22):4644-50. PubMed ID: 22930164
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Deformability-based flow cytometry.
    Lincoln B; Erickson HM; Schinkinger S; Wottawah F; Mitchell D; Ulvick S; Bilby C; Guck J
    Cytometry A; 2004 Jun; 59(2):203-9. PubMed ID: 15170599
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Integrated automated particle tracking microfluidic enables high-throughput cell deformability cytometry for red cell disorders.
    Guruprasad P; Mannino RG; Caruso C; Zhang H; Josephson CD; Roback JD; Lam WA
    Am J Hematol; 2019 Feb; 94(2):189-199. PubMed ID: 30417938
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A comprehensive strategy for the analysis of acoustic compressibility and optical deformability on single cells.
    Yang T; Bragheri F; Nava G; Chiodi I; Mondello C; Osellame R; Berg-Sørensen K; Cristiani I; Minzioni P
    Sci Rep; 2016 Apr; 6():23946. PubMed ID: 27040456
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inertial Microfluidics Enabling Clinical Research.
    Kalyan S; Torabi C; Khoo H; Sung HW; Choi SE; Wang W; Treutler B; Kim D; Hur SC
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33802356
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A continuous-flow acoustofluidic cytometer for single-cell mechanotyping.
    Wang H; Liu Z; Shin DM; Chen ZG; Cho Y; Kim YJ; Han A
    Lab Chip; 2019 Jan; 19(3):387-393. PubMed ID: 30648172
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Real-time deformability cytometry as a label-free indicator of cell function.
    Otto O; Rosendahl P; Golfier S; Mietke A; Herbig M; Jacobi A; Topfner N; Herold C; Klaue D; Girardo S; Winzi M; Fischer-Friedrich E; Guck J
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():1861-4. PubMed ID: 26736644
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-throughput single-cell rheology in complex samples by dynamic real-time deformability cytometry.
    Fregin B; Czerwinski F; Biedenweg D; Girardo S; Gross S; Aurich K; Otto O
    Nat Commun; 2019 Jan; 10(1):415. PubMed ID: 30679420
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Machine learning empowered multi-stress level electromechanical phenotyping for high-dimensional single cell analysis.
    Liang M; Tang Q; Zhong J; Ai Y
    Biosens Bioelectron; 2023 Apr; 225():115086. PubMed ID: 36696849
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inertial focusing in microfluidics.
    Martel JM; Toner M
    Annu Rev Biomed Eng; 2014 Jul; 16():371-96. PubMed ID: 24905880
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-throughput linear optical stretcher for mechanical characterization of blood cells.
    Roth KB; Neeves KB; Squier J; Marr DW
    Cytometry A; 2016 Apr; 89(4):391-7. PubMed ID: 26565892
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation.
    Bhagat AA; Hou HW; Li LD; Lim CT; Han J
    Lab Chip; 2011 Jun; 11(11):1870-8. PubMed ID: 21505682
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multi-sample deformability cytometry of cancer cells.
    Ahmmed SM; Bithi SS; Pore AA; Mubtasim N; Schuster C; Gollahon LS; Vanapalli SA
    APL Bioeng; 2018 Sep; 2(3):032002. PubMed ID: 31069319
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Measuring cell mechanics by optical alignment compression cytometry.
    Roth KB; Eggleton CD; Neeves KB; Marr DW
    Lab Chip; 2013 Apr; 13(8):1571-7. PubMed ID: 23440063
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Technologies for measuring red blood cell deformability.
    Matthews K; Lamoureux ES; Myrand-Lapierre ME; Duffy SP; Ma H
    Lab Chip; 2022 Mar; 22(7):1254-1274. PubMed ID: 35266475
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microfluidics separation reveals the stem-cell-like deformability of tumor-initiating cells.
    Zhang W; Kai K; Choi DS; Iwamoto T; Nguyen YH; Wong H; Landis MD; Ueno NT; Chang J; Qin L
    Proc Natl Acad Sci U S A; 2012 Nov; 109(46):18707-12. PubMed ID: 23112172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.