BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 37789618)

  • 1. A calibration-free model of micropipette aspiration for measuring properties of protein condensates.
    Roggeveen JV; Wang H; Shi Z; Stone HA
    Biophys J; 2024 Jun; 123(11):1393-1403. PubMed ID: 37789618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface tension and viscosity of protein condensates quantified by micropipette aspiration.
    Wang H; Kelley FM; Milovanovic D; Schuster BS; Shi Z
    Biophys Rep (N Y); 2021 Sep; 1(1):. PubMed ID: 36247368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amphiphilic proteins coassemble into multiphasic condensates and act as biomolecular surfactants.
    Kelley FM; Favetta B; Regy RM; Mittal J; Schuster BS
    Proc Natl Acad Sci U S A; 2021 Dec; 118(51):. PubMed ID: 34916288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular regulators have matching effects on the phase equilibrium and interfacial tension of biomolecular condensates.
    Mazarakos K; Zhou HX
    Protein Sci; 2021 Jul; 30(7):1360-1370. PubMed ID: 33864415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-Dependent Material Properties of Aging Biomolecular Condensates from Different Viscoelasticity Measurements in Molecular Dynamics Simulations.
    Tejedor AR; Collepardo-Guevara R; Ramírez J; Espinosa JR
    J Phys Chem B; 2023 May; 127(20):4441-4459. PubMed ID: 37194953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface tension measurement and calculation of model biomolecular condensates.
    Holland J; Castrejón-Pita AA; Tuinier R; Aarts DGAL; Nott TJ
    Soft Matter; 2023 Nov; 19(45):8706-8716. PubMed ID: 37791635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proximity to criticality predicts surface properties of biomolecular condensates.
    Pyo AGT; Zhang Y; Wingreen NS
    Proc Natl Acad Sci U S A; 2023 Jun; 120(23):e2220014120. PubMed ID: 37252985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods for characterizing the material properties of biomolecular condensates.
    Alshareedah I; Kaur T; Banerjee PR
    Methods Enzymol; 2021; 646():143-183. PubMed ID: 33453924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shape recovery of deformed biomolecular droplets: Dependence on condensate viscoelasticity.
    Zhou HX
    J Chem Phys; 2021 Oct; 155(14):145102. PubMed ID: 34654286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active microrheology of protein condensates using colloidal probe-AFM.
    Li X; van der Gucht J; Erni P; de Vries R
    J Colloid Interface Sci; 2023 Feb; 632(Pt B):357-366. PubMed ID: 36436394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative theory for the diffusive dynamics of liquid condensates.
    Hubatsch L; Jawerth LM; Love C; Bauermann J; Tang TD; Bo S; Hyman AA; Weber CA
    Elife; 2021 Oct; 10():. PubMed ID: 34636323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational Freedom and Topological Confinement of Proteins in Biomolecular Condensates.
    Scholl D; Deniz AA
    J Mol Biol; 2022 Jan; 434(1):167348. PubMed ID: 34767801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Higher-order organization of biomolecular condensates.
    Fare CM; Villani A; Drake LE; Shorter J
    Open Biol; 2021 Jun; 11(6):210137. PubMed ID: 34129784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salt-Dependent Rheology and Surface Tension of Protein Condensates Using Optical Traps.
    Jawerth LM; Ijavi M; Ruer M; Saha S; Jahnel M; Hyman AA; Jülicher F; Fischer-Friedrich E
    Phys Rev Lett; 2018 Dec; 121(25):258101. PubMed ID: 30608810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determining Thermodynamic and Material Properties of Biomolecular Condensates by Confocal Microscopy and Optical Tweezers.
    Ghosh A; Kota D; Zhou HX
    Methods Mol Biol; 2023; 2563():237-260. PubMed ID: 36227477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The liquid-to-solid transition of FUS is promoted by the condensate surface.
    Shen Y; Chen A; Wang W; Shen Y; Ruggeri FS; Aime S; Wang Z; Qamar S; Espinosa JR; Garaizar A; St George-Hyslop P; Collepardo-Guevara R; Weitz DA; Vigolo D; Knowles TPJ
    Proc Natl Acad Sci U S A; 2023 Aug; 120(33):e2301366120. PubMed ID: 37549257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomolecular condensates form spatially inhomogeneous network fluids.
    Dar F; Cohen SR; Mitrea DM; Phillips AH; Nagy G; Leite WC; Stanley CB; Choi JM; Kriwacki RW; Pappu RV
    Nat Commun; 2024 Apr; 15(1):3413. PubMed ID: 38649740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporation and Assembly of a Light-Emitting Enzymatic Reaction into Model Protein Condensates.
    Guan M; Garabedian MV; Leutenegger M; Schuster BS; Good MC; Hammer DA
    Biochemistry; 2021 Oct; 60(42):3137-3151. PubMed ID: 34648259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Programmable viscoelasticity in protein-RNA condensates with disordered sticker-spacer polypeptides.
    Alshareedah I; Moosa MM; Pham M; Potoyan DA; Banerjee PR
    Nat Commun; 2021 Nov; 12(1):6620. PubMed ID: 34785657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What are the distinguishing features and size requirements of biomolecular condensates and their implications for RNA-containing condensates?
    Forman-Kay JD; Ditlev JA; Nosella ML; Lee HO
    RNA; 2022 Jan; 28(1):36-47. PubMed ID: 34772786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.