These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 37789618)

  • 21. Initial heat analysis in dissociation isothermal titration calorimetry: An analytical tool for thermodynamic dissection of biomolecular condensates.
    Yun JN; Koh J
    Biochem Biophys Res Commun; 2022 May; 605():127-133. PubMed ID: 35325654
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phase Separation in Biology and Disease; Current Perspectives and Open Questions.
    Boeynaems S; Chong S; Gsponer J; Holt L; Milovanovic D; Mitrea DM; Mueller-Cajar O; Portz B; Reilly JF; Reinkemeier CD; Sabari BR; Sanulli S; Shorter J; Sontag E; Strader L; Stachowiak J; Weber SC; White M; Zhang H; Zweckstetter M; Elbaum-Garfinkle S; Kriwacki R
    J Mol Biol; 2023 Mar; 435(5):167971. PubMed ID: 36690068
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sequence variations of phase-separating proteins and resources for studying biomolecular condensates.
    Guo G; Wang X; Zhang Y; Li T
    Acta Biochim Biophys Sin (Shanghai); 2023 Jul; 55(7):1119-1132. PubMed ID: 37464880
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biological colloids: Unique properties of membraneless organelles in the cell.
    Bratek-Skicki A; Van Nerom M; Maes D; Tompa P
    Adv Colloid Interface Sci; 2022 Dec; 310():102777. PubMed ID: 36279601
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dipping contacts - a novel type of contact site at the interface between membraneless organelles and membranes.
    Hoffmann C; Milovanovic D
    J Cell Sci; 2023 Dec; 136(24):. PubMed ID: 38149872
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Capillary forces generated by biomolecular condensates.
    Gouveia B; Kim Y; Shaevitz JW; Petry S; Stone HA; Brangwynne CP
    Nature; 2022 Sep; 609(7926):255-264. PubMed ID: 36071192
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantifying viscosity and surface tension of multicomponent protein-nucleic acid condensates.
    Alshareedah I; Thurston GM; Banerjee PR
    Biophys J; 2021 Apr; 120(7):1161-1169. PubMed ID: 33453268
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ionic Effect on the Microenvironment of Biomolecular Condensates.
    Zhu L; Pan Y; Hua Z; Liu Y; Zhang X
    J Am Chem Soc; 2024 May; 146(20):14307-14317. PubMed ID: 38722189
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomolecular Condensates: Structure, Functions, Methods of Research.
    Gorsheneva NA; Sopova JV; Azarov VV; Grizel AV; Rubel AA
    Biochemistry (Mosc); 2024 Jan; 89(Suppl 1):S205-S223. PubMed ID: 38621751
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sequence determinants of in cell condensate morphology, dynamics, and oligomerization as measured by number and brightness analysis.
    Emenecker RJ; Holehouse AS; Strader LC
    Cell Commun Signal; 2021 Jun; 19(1):65. PubMed ID: 34090478
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sodium ion influx regulates liquidity of biomolecular condensates in hyperosmotic stress response.
    Morishita K; Watanabe K; Naguro I; Ichijo H
    Cell Rep; 2023 Apr; 42(4):112315. PubMed ID: 37019112
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Emergent properties of melanin-inspired peptide/RNA condensates.
    Netzer A; Katzir I; Baruch Leshem A; Weitman M; Lampel A
    Proc Natl Acad Sci U S A; 2023 Oct; 120(44):e2310569120. PubMed ID: 37871222
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phase Separation in Membrane Biology: The Interplay between Membrane-Bound Organelles and Membraneless Condensates.
    Zhao YG; Zhang H
    Dev Cell; 2020 Oct; 55(1):30-44. PubMed ID: 32726575
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using quantitative reconstitution to investigate multicomponent condensates.
    Currie SL; Rosen MK
    RNA; 2022 Jan; 28(1):27-35. PubMed ID: 34772789
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Targeting of biomolecular condensates to the autophagy pathway.
    Ma X; Li P; Ge L
    Trends Cell Biol; 2023 Jun; 33(6):505-516. PubMed ID: 36150962
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nuclear Protein Condensates and Their Properties in Regulation of Gene Expression.
    Li W; Jiang H
    J Mol Biol; 2022 Jan; 434(1):167151. PubMed ID: 34271007
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determinants of viscoelasticity and flow activation energy in biomolecular condensates.
    Alshareedah I; Singh A; Yang S; Ramachandran V; Quinn A; Potoyan DA; Banerjee PR
    Sci Adv; 2024 Feb; 10(7):eadi6539. PubMed ID: 38363841
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 'RNA modulation of transport properties and stability in phase-separated condensates.
    Tejedor AR; Garaizar A; Ramírez J; Espinosa JR
    Biophys J; 2021 Dec; 120(23):5169-5186. PubMed ID: 34762868
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Demixing is a default process for biological condensates formed via phase separation.
    Zhu S; Shen Z; Wu X; Han W; Jia B; Lu W; Zhang M
    Science; 2024 May; 384(6698):920-928. PubMed ID: 38781377
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sequence-dependent material properties of biomolecular condensates and their relation to dilute phase conformations.
    Sundaravadivelu Devarajan D; Wang J; Szała-Mendyk B; Rekhi S; Nikoubashman A; Kim YC; Mittal J
    Nat Commun; 2024 Mar; 15(1):1912. PubMed ID: 38429263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.