BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 37789850)

  • 1. Genome analysis of a plasmid-bearing myxobacterim
    Liu L; Xu F; Lei J; Wang P; Zhang L; Wang J; Zhao J; Mao D; Ye X; Huang Y; Hu G; Cui Z; Li Z
    Front Microbiol; 2023; 14():1250602. PubMed ID: 37789850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The complete genome sequence and analysis of a plasmid-bearing myxobacterial strain Myxococcus fulvus 124B02 (M 206081).
    Chen XJ; Han K; Feng J; Zhuo L; Li YJ; Li YZ
    Stand Genomic Sci; 2016; 11():1. PubMed ID: 26734118
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Yin Z; Wang X; Hu Y; Zhang J; Li H; Cui Y; Zhao D; Dong X; Zhang X; Liu K; Du B; Ding Y; Wang C
    mSystems; 2022 Apr; 7(2):e0142621. PubMed ID: 35229649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complete genome sequence and identification of polyunsaturated fatty acid biosynthesis genes of the myxobacterium Minicystis rosea DSM 24000
    Pal S; Sharma G; Subramanian S
    BMC Genomics; 2021 Sep; 22(1):655. PubMed ID: 34511070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation of salt-tolerant Myxococcus strains and their motility systems to the ocean conditions.
    Wang B; Hu W; Liu H; Zhang CY; Zhao JY; Jiang DM; Wu ZH; Li YZ
    Microb Ecol; 2007 Jul; 54(1):43-51. PubMed ID: 17186141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomes of Novel
    Murphy CL; Yang R; Decker T; Cavalliere C; Andreev V; Bircher N; Cornell J; Dohmen R; Pratt CJ; Grinnell A; Higgs J; Jett C; Gillett E; Khadka R; Mares S; Meili C; Liu J; Mukhtar H; Elshahed MS; Youssef NH
    Appl Environ Microbiol; 2021 Nov; 87(23):e0170621. PubMed ID: 34524899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seawater-regulated genes for two-component systems and outer membrane proteins in myxococcus.
    Pan HW; Liu H; Liu T; Li CY; Li ZF; Cai K; Zhang CY; Zhang Y; Hu W; Wu ZH; Li YZ
    J Bacteriol; 2009 Apr; 191(7):2102-11. PubMed ID: 19151139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Predation Strategy of
    Thiery S; Kaimer C
    Front Microbiol; 2020; 11():2. PubMed ID: 32010119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversity and Evolution of Myxobacterial Type IV Pilus Systems.
    Sharma G; Burrows LL; Singer M
    Front Microbiol; 2018; 9():1630. PubMed ID: 30072980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predation of oomycetes by myxobacteria via a specialized CAZyme system arising from adaptive evolution.
    Zhang L; Dong C; Wang J; Liu M; Wang J; Hu J; Liu L; Liu X; Xia C; Zhong L; Zhao Y; Ye X; Huang Y; Fan J; Cao H; Wang J; Li Y; Wall D; Li Z; Cui Z
    ISME J; 2023 Jul; 17(7):1089-1103. PubMed ID: 37156836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mosaic genome of Anaeromyxobacter dehalogenans strain 2CP-C suggests an aerobic common ancestor to the delta-proteobacteria.
    Thomas SH; Wagner RD; Arakaki AK; Skolnick J; Kirby JR; Shimkets LJ; Sanford RA; Löffler FE
    PLoS One; 2008 May; 3(5):e2103. PubMed ID: 18461135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Genetics of Prey Susceptibility to Myxobacterial Predation: A Review, Including an Investigation into Pseudomonas aeruginosa Mutations Affecting Predation by Myxococcus xanthus.
    Sydney N; Swain MT; So JMT; Hoiczyk E; Tucker NP; Whitworth DE
    Microb Physiol; 2021; 31(2):57-66. PubMed ID: 33794538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole-genome sequencing of a biocontrol Myxococcus xanthus R31 isolate and comparative genomic analysis.
    Dong H; Gao R; Dong Y; Yao Q; Zhu H
    Gene; 2023 May; 863():147286. PubMed ID: 36804855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinformatic and Functional Characterization of Hsp70s in Myxococcus xanthus.
    Pan Z; Zhang Z; Zhuo L; Wan TY; Li YZ
    mSphere; 2021 May; 6(3):. PubMed ID: 34011688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic, transcriptomic, and proteomic approaches towards understanding the molecular mechanisms of salt tolerance in Frankia strains isolated from Casuarina trees.
    Oshone R; Ngom M; Chu F; Mansour S; Sy MO; Champion A; Tisa LS
    BMC Genomics; 2017 Aug; 18(1):633. PubMed ID: 28821232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gliding motility in bacteria: insights from studies of Myxococcus xanthus.
    Spormann AM
    Microbiol Mol Biol Rev; 1999 Sep; 63(3):621-41. PubMed ID: 10477310
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Contreras-Moreno FJ; Pérez J; Muñoz-Dorado J; Moraleda-Muñoz A; Marcos-Torres FJ
    Front Microbiol; 2024; 15():1339696. PubMed ID: 38328431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo transcriptome analysis of halotolerant bacterium Staphylococcus sp. strain P-TSB-70 isolated from East coast of India: In search of salt stress tolerant genes.
    Das P; Behera BK; Chatterjee S; Das BK; Mohapatra T
    PLoS One; 2020; 15(2):e0228199. PubMed ID: 32040520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myxococcus xanthus Growth, Development, and Isolation.
    Vaksman Z; Kaplan HB
    Curr Protoc Microbiol; 2015 Nov; 39():7A.1.1-7A.1.21. PubMed ID: 26528785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Pseudochelin Production in Myxococcus xanthus.
    Korp J; Winand L; Sester A; Nett M
    Appl Environ Microbiol; 2018 Nov; 84(22):. PubMed ID: 30217842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.